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PART ONE

SELECTION INDEX

The following 22 chapters cover material needed for application of the selection
index to nearly any imaginable selection problem. The initial chapters review or introduce
expected values, probabilities for identity by descent, kinds of genetic values and genetic
variances, and genetic covariances between relatives. These tools and definitions provide
the foundation for deriving and applying the selection index and its properties. Much of this
material was developed by Dr. C. R. Henderson who began such a course in 1948 at Cornell
University after studying at Iowa State University with Dr. Jay L. Lush and Dr. L. N. Hazel.
For many years, I taught the course, also at Cornell University, with some new material
based usually on the principles outlined by Henderson. The course has subsequently been

given at the University of Nebraska-Lincoln.



CHAPTER 1

PARAMETERS, STATISTICS, AND EXPECTED VALUES

A review of some basic statistics may be useful before discussing selection for
quantitative traits. Two important parameters for the description of continuous or
quantitative traits are the mean (or average) and the standard deviation. The usual Greek
symbols for these are u, "mu," and o, small "sigma." The square of the standard deviation,
o2

, is called the variance, "sigma squared."

A subscript can be used to distinguish the means and variances for different

2

X would be the mean and variance for some

populations or different traits; e.g., uy and o
trait called X. After this chapter when developing selection index procedures, means,
variances, and covariances will be assumed to be known exactly. When true values are
known exactly, they are called parameters. In the real world, parameters are never known
exactly because the entire potential population is not known or measured. Then parameters
such as the mean or variance must be estimated from a sample of the population.
Technically, estimates are known as statistics. A statistic that estimates a parameter may
be given the same symbol but with a hat or caret, “, to distinguish it from the parameter.
Often parameters are designated with Greek letters and estimates by corresponding English

letters in some way. Pretending that parameters are known can be justified in some cases

because with large samples the error (difference of estimate from parameter) will be very
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small. In the last part of the book on mixed model procedures, this pretence will be
tightened so that means are estimated from the population jointly with predicting genetic
values. Even then, variances and covariances will be assumed to be known exactly.

Chapters 35-39 describe some simple ways of estimating variances and covariances.

THE MEAN
If x; (i=1, ..., n) is the observation on the ith individual for trait X, then the estimate

of by is uy or equivalently X, "x-bar". A simple estimate is

n
by = X X;/n = (x] + Xg + *++ + xy)/n which may also be called X,
i=1
n
the average of n observations. The symbol ¥ is mathematical notation that means to sum
i=1

everything that follows the = for changes in the subscript i which changes by units of 1 from
i = 1 (the first record) to i = n (the last record). If observations for the whole population,
N

N, were known, then u, = X x;/N.
i=1

VARIANCE

Although the standard deviation is a more intuitive measure of variability, the usual

2

measure of variability is the variance, 0%

, which is the standard deviation squared for trait
X. Knowledge of variances is necessary in animal breeding for at least two reasons.
Variances are useful in describing populations and, more importantly, are used along with
covariances in developing procedures for predicting genetic values. The definition of o% for

a population is

o2 = Elxudl = [xm? + Opud? 4.+ Gns)?UN,
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where N is the total number of observations in the population. The E stands for expected
or average value and will be discussed later in this chapter. Thus, a% is a kind of average,
i.e., is the average of the squared deviations of the observations from the mean for a
variable named X. While the variance is in terms of units squared, the standard deviation
is in terms of the units of measurement--the same as the mean, e.g., the mean of milk

production may be expressed in Ib. of milk, the variance in 1b2 of milk, and the standard

deviation in lb. of milk.

Computing the Variance

If x; (i=1, .., N) is the observation on the itll individual, then

2

N
2 2
oy = I Giom)/N = @ Ni) /N

i
The above procedure is appropriate when u, is known exactly. When N includes the whole
population, the computed value is the population variance, and when n is a sample of the

population, the value is an estimate of the population variance and should be denoted as

c‘:x. If uy is estimated from a sample of the data as X or [y, then ai is estimated as:
A2 2 =x) (2x
62 = (21 - &)y ),
n
where n-1 is the degrees of freedom.
The division is by n-1 so that E(&)z() = 0)2(, = oi, i.e., the average of estimates of o% will be

oi. Thus, the estimate is said to be unbiased. Alternative computing procedures are listed

in Table 1.1. The following section on expected values will describe how to find the

. A2
expected or average value of estimates such as Oy
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The mean and standard deviation characterize a normal distribution of observations.
The normal distribution follows the bell-shaped curve where the values along the horizontal

axis are plotted against the frequencies of those values on the vertical axis.

Frequencies

S py20y ByOy By Pyt Oy py+20y +

values of X

The average of all the x; is uy and lies at the center of the symmetrical distribution--
one-half the x; above and one-half the xj below p,. The range p, - o, to u, + o, will
contain 68% of the X;3 My - 20, 1O py + 2°x will contain 96% of the X;. Multipliers of o,
for other frequencies are given in most introductory statistics books.

The distribution of averages of n observations has mean p,. The variance of the

a2 : A R
averages is 6, /n, with the square root, 6= = Oy /yn ,called the standard error of the mean.

COVARIANCE

The variance and the corresponding standard deviation thus measure how one trait
varies. The covariance, a measure of how two traits vary together (co-vary), is also needed
in developing selection procedures. For example, the covariance between two traits
measured on the same animal, e.g., height and weight, may be needed or the covariance
between the same trait measured on two relatives may be needed. The definition and

computing procedures for the covariance are analogous to those for the variance.
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Suppose that the two measures are x; and yj (i=1, .., N) for the measurements on
the il pair of relatives. The covariance has the symbol Ixy (sigma-x-y) and is defined as
the average of products of deviations from the means of traits X and Y;

oxy = El(ity) (¥j=Hy)]

= [(1=kx) (F171y) + (ky) (V27Hy) + - + (AN-Hx) ON-H#y)]/N
N

.El [ (xi=px) (vi-my) 1/N.
1=

This computation is appropriate when uy and py are known exactly and gives the
population covariance when N includes the whole population and gives an estimate (axy)
of the population covariance when n is a sample.

If py and py are estimated from a sample of the population as X and y, (&, ),

then

A

bxy = =L (xi-fy) (yi-fiy) 1/ (1)

2X:)(2Zy;
[=x;y; - %y_l)]/(n—l).

Note the similarity of the computing procedures for variances and covariances.

A positive covariance indicates that as the value for one trait increases, the value for
the other trait also tends to increase. A negative covariance indicates that as the value for
one trait increases, the other tends to decrease. The traits are not correlated when the
covariance is zero. The units of a covariance are units of the first trait times units of the

second trait.
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FREQUENCY DATA

Sometimes observations fall into discrete categories. An example is with two alleles
at one locus which results in three genotypes--the two homozygotes and the heterozygote.
Estimates of means, variances and covariances can be made with the previously described
procedures where each observation is treated separately. For purposes of algebraic
simplification or slightly less tedious computation, advantage can be taken of all observations
in a category being the same. Suppose that the observations in ¢ categories are
y; (i=1, .., ¢) with frequencies in each category of f;. Unless some categories are thrown

C

out, .21 f; = 1. The formulas are given for cases where =f; might not equal unity. Suppose
1=
that the sample size is n. Then the number with observation y; in category i is nf;. The sum

C
of all observations is X nf;y;. The estimated mean is the sum divided by the number of
C l=1
observations, X nf;;
i=1

iy =7y = (znfjy;)/(znfy) = =fjy;/zf; .

The definition of variance is the same as for non-categorized data but the squared
deviations from the mean are identical for all observations in the same category, i.e., nf; will
be (y; - ﬁy)z so that the sum of squared deviations is
fi(v: = 0. = nsfi(ve - o)
znf;(y; l‘y) = n2f;(y; /-’-y) .
Division by number of observations minus one results in:
2 £ ) -
oy = [nzf;(y; - u.y) ]/(nzf;-1) and for £f; = 1
W2 £ < N2
8 = [=fi(y; - Ay ] [n/(a-D)}.

The preceding formulas are given in Table 1.1. Algebraically identical computing

formulas which in most cases are easier to use are in the right column of Table 1.1.
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CORRELATION

The correlation coefficient is a standardized measure of the relationship between two
traits which allows comparisons of correlations among different pairs of traits. The possible
range is -1 to +1 with no units involved for either trait. The correlation between traits X

and Y or relatives x and y is defined as
fy = =
0202
X'y
If estimates of the covariance and variances are used in the formula, then Txy is an estimate

of the population correlation coefficient.

REGRESSION

The selection index procedures that will be developed are related to regression
equations. The simplest form of a regression equation is to predict the value of some trait
for an animal i, e.g., y;, when the measurement of another trait, x;, is known. The statistical
procedure of minimizing the squared error between y; and the prediction, §; results in the
equation for regression of trait Y on trait X. The basic principle is that a change in trait
X results in a corresponding change in trait Y. The regression coefficient denoted as by-x
(b-y-dot-x), describes the magnitude of the corresponding change. Least squares or

minimization of £(y; -§)° results in the solution for by., = 6y /3. The full equation

also depends on by and f,:

A

i = iy + byuy (xj - ).
As with the correlation coefficient, the covariance determines the direction of the change.

Note that the covariance is in terms of units for x by units for y and the variance of X is in
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the square of units for X so that by.x is in terms of units of Y divided by units of X, i.e,
change in Y per unit change in X. The estimated means ﬁy and [y are as described earlier.
To estimate uy, py and by .y, measurements on both traits are needed. Then, to predict y;

. is needed.

as yj, only a measure on x;

EXPECTED VALUES

The use of expected values increases the powerful and flexibility of the selection
index but at the expense of minor frustration of some students who initially have difficulty
in developing a feeling for what they are doing. Experience has shown that most students
overcome this difficulty after some practice and that they become much more adept at
solving problems which involve more than the usual case of selection for additive genetic
value.

The symbol often used for the expected or average value of some expression
involving constants and variables is E( ). Expected values of most expressions used in
estimating genetic parameters are relatively easy to determine if six definitions are
remembered.

Let ¢ = constant; x; = variable from some distribution with mean py and variance

oi; and y; = variable from some distribution with mean Ky variance 03, and covariance
with xj, oyy.

Definition 1: E(c) = c¢. Certainly the average value of a constant is that constant.
Similarly E(c?) = c2.
Definition 2: E(x;) = uy. The average of all possible values of variable X is its

average Or mean, liy.
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Definition 3: E(cx;) = ¢ E(x;) = cuy. The average of all possible values of a
variable times a constant is the constant times the mean of the variable. The principle is
that for expressions involving a constant the constant can be taken outside the expectation
operation.

Definition 4: E(xj+y;) = EX) + E(y;) = py + by The principle is that the
expectation of a sum can be taken as the sum of the expectations of the parts.

Definition 5: E[(xi-ux)z] = 03. By definition, the variance of a variable X, o%, is the
average squared deviation of the variable from its mean. Definition 5 leads directly to
E(x2) = o + “‘x If the equation for definition S is expanded, the expectation of its parts
is:

o2 = E(xj-ty)® = B2ty + )

- E(7) - EQuyxp) + E(:2) from (4)
= E(x7) - 2uE(x;) + 4> from (1) and (3)
- B - @uy) () + By

2 2
= E(xi ) - ﬂx.

Therefore, E(xiz) = oi + u)z(. Note that E(xiz) = oi when uy, = 0. Also, as a rule of
thumb for finding the variance for a variable X, E(xiz) = oz can be used since uy drops out
of the variance.

Definition 6: E[(x-xy) (.Vi'“'y)] = Oxy- By definition, the covariance between
variables X and Y, Oxy» is the average of the products of their deviations from their means.
Thus, E(xjyj) = oxy + kxuy Which follows from definition 6. If the equation for definition

6 is expanded, the expectation of its parts is:
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oxy = El(xj=by) (vi~Hy)]
= E(Xjyj = BxYi = ByXj + Hxhy)
= E(xjyj) - uxE(j) - u.yE(xi) * byhy from (1) and (3)
= B(xjyi) - Bxiy = Bykx *+ Hxby
= E(Xjyj) - xhy-
Therefore, E(xjyj) = oxy * kxty. Note that E(xjy;) = oxy When either or both
Ky and py = q,

A general procedure that works well for applying these definitions to determine the
expected values of more complicated sums of squares and products of variables is to use the
following steps:

Step 1. Substitute elements of the model into the function.

Step 2. Expand the function in terms of the model.

Step 3. Find the expected value of each term of the function.

Step 4. The expected value of the function will be the sum of the expected values

of the individual terms.

Example

Let Pij =pu+ A+ Eijv where Pij is an observation on the ]t—h' record in the i class,
u is a constant, A, is a variable with u A = 0 and variance o%, Eij is a variable with
LE = 0 and variance o%, and the covariance between any two A's, any two E's or any A and

any E is zero.



Expected Values 13

The expected value of any observation is

E(Pij) = E(u + Aj + EU) = E(u) + E(A)) + E(EU)

L+ 0+0=npu
The expected value of any observation squared is:

E(P, ) “E[( + A + EIJ) 1=E@? + Al + E% + 2uA; + 2uEjj + 2AE;))

E(u?) E(A. ) + E(E..) + E(2uA;) + E(uEj) + EQAE;)

w2 02 . oE + 2uE(A;) + 2uE(Ey) + 2E(AEj)

= 2+02+02
H AT 9E

since E(A;) and E(Eij) both equal zero and E(AiEij) =oag = 0.
The expected value of the product of observations (j ' # j) in the same class

(class 1) is:

E(PijPI_]') = E[(’J' + Al + El]) ([J. + Al + El]')]

E(u®+ Ayt uEjp + A+ AT+ AEjp + Eji+ AE;+ BB )

u +0+0+0+oA+0+0+0+0
-2+ o}
because both E(A]E ) and E(AlE .} are equal to zero when o AE = 0 and E(EijEij') =0
when oEijElJ' =
The expected value of the product of observations in different classes (classes i and

i) is:

E(P;P) = El(u + Aj + Ep) (b + Ap + Egy)] (/1" and j#j' or j=)

Il

E(u +uA; +uE +uA1+A1A +A1E..+uE +A1E +EIJE1'J')

u +0+0+0+0+0+0+0+0

with most terms equal to zero.
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Another Example
Suppose a phenotypic observation on animal i is made up of a constant u, a genetic
value G, and an environmental effect E:

P; =u+ Gj+ E;

where us = pg =0, E(Gzi) = 0(2;, E(E%) = a%, and no covariance between any G's, any

E's, and any G with any E.

]

b+ pug + UE = 4
Note that pp = K, i.e.,, two symbols that are equal which will be convenient in the

expectation for 012).

E(P?) = E[(s + G; + E)?] = E(u® + G? + EZ + 2uG, + 2uE; + 2GE)
= 12 + E(G%) + E(E?) + 2uE(G;) + 2uE(E;) + 2E(G;E)
=t +oi+ok+0+0+0
If ogg * 0, then E(G,E;) would also be different from zero.

With no G with E covariance:

op = El(P;u)?) = El(w + G; + E; - 0% = E[(G; + E)?]

E(G?) + E(E?) + 2E(GE))

oé+o%+0

= Eu? + #G; + pE; +uG; + GiGj + GE; + kE; + GE; + EE)
2

=H
COV(PP)) = E[(Pru)(Pyu)] = E[( + G; + Ej - w)( + Gj + E; - p)]
=0+0+0+0.
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TABLE 1.1. SUMMARY OF MEAN AND VARIANCE

Symbols:

Population

Sample

Units

Computing formulas:

Nonfrequency data:

Population

Sample

Frequency data:

Population

Sample

Mean Variance
Kx oi, V(x)
P X 6% S§
units units squared
IXj . Z(Xi-ux)z
N X N
= (x;-fiy)>
—_— = X =X
n n-1
fiy; i (y;-thy)?
iYi - 1()'1 “'y)
zf; Efi
A N2
4 =5 zfj (yi""y) n
“y Zfi n-1

|

Standard Deviation

Alternate Computing
Forms for Variance

2 2
in -Nﬂx

2 2
z fiyi -(zf;) p,y ‘

zf ’
it 5t =1, sty -u

As above, but multiply




CHAPTER 2

A LITTLE ABOUT MATRIX ALGEBRA

The algebraic description of selection index procedures is very easy with algebra of
matrices and vectors. Matrix algebra is also very efficient for writing least squares and
mixed model equations and describing the properties of mixed model procedures which will
be introduced in the second section of the book. Computer packages are readily available
for doing computations interactively using the notation of matrix algebra. Two obvious ones
are MATLAB, a personal computer package, which is excellent for working problem sets
on a scale not possible with desk calculators, and the IML routines in SAS, a statistical
package used in many statistical methods courses. MATLAB is also available on many large
computer systems. Although much of the detail of selection index and mixed model
procedures is not efficiently done with matrix routines, the arithmetically difficult parts can
be illustrated quickly with friendly matrix packages. This chapter will describe the basic
rules for matrix algebra and later chapters will describe the computations both element by
element and also in matrix form suitable for calculation with a matrix package. MATLAB
terminology will be used although IML statements are similar. This chapter and summaries
at the end of some chapters on matrix notation can be skipped without missing any of the
basic ideas of selection index theory. Many illustrative problems, however, will become
more valuable by combining the detail needed for deriving the expected variances and

covariances with the ease of doing the final computations with a hands-on matrix package.

17
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The set of numbers such as the coefficients used later in the numerical example of
the one-way fixed classification model:

6312
3300
1010
200 2

is called a matrix of 4 rows and 4 columns. Matrices do not have to be square or
symmetrical as is C. A symmetrical matrix has columns equal to its corresponding rows.
A matrix with only one column is called a vector; e.g., the right-hand sides for that example

can be written as the vector, r:

y..
Y1.

y2.
y3.

Notice that elements of matrices and vectors can be represented with numbers or symbols.
Matrix arithmetic would require numbers. Matrix algebra may be done with a mixture of
both. Matrix algebra is useful in working with and solving least squares and mixed model
equations as well as selection index procedures. The notation of matrix algebra is especially
convenient and concise for writing simultaneous equations both symbolically and
numerically.

The rules of matrix algebra are similar to those for scalar algebra with some
important exceptions. Only four rules will be needed for most of this book. Other rules will

be introduced when needed.
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MATRIX MULTIPLICATION
Rule 1) Matrix multiplication is accomplished by summing the products of each element
of each row of the first matrix with the corresponding element of each column
of the second matrix (thus the number of elements in each row of the first
matrix must equal the number of elements in each column of the second matrix
to be conformable for multiplication). A new matrix is formed from the sums
of these row by column products;

Sum of products of elements of 1st row x 1st column = new element 1,1
Sum of products of elements of 1st row x 2nd column = new element 1,2

Sum of products of elements of 2nd row x 1st column = new element 2,1
Sum of products of elements of 2nd row x 2nd column = new element 2,2

(The first subscript refers to the row; the second, to the column of the resulting matrix, or

vector.)

For example, examine multiplication of a matrix of numbers by column vector of

symbols:
6 3 1 2 il
3 3 0 0 Aq
1 0 1 0 A
2 0 0 2 Az
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Sum for 1st row by 1st column;

60 + 3A1 + 1A2 + 2A3

Sum for 2nd row by 1st column:

3u + 3A1 + 0A, + 0A3

Sum for 3rd row by 1st column;

1 + 0A; + 1A, + 0A4

(element 1,1)

(element 2,1)

(element 3,1)
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Sum for 4th row by 1st column;

2;1 + OAl + OAZ + 2A3 (element 4,1) \

\Y

The results are the left-hand sides (LHS) of the least squares equations for an example of
the one-way classification model. This example is partially numerical, the elements of C,

and partially symbolic, the elements of the solution vector:

/

The coefficients of the effects on the left-hand sides (LHS) of least squares (LSE)
or mixed model equations (MME) make up the coefficient matrix, for example, the matrix
C. A similar matrix of coefficients for selection index equations will be denoted P.

The sums on the right of the equal signs make up the right-hand side (RHS) vector:

y..
Y1.

Y2,
y3.

r =

With selection index equations, the RHS vector will be made up of covariances of

records in the index with the variable being predicted and may be denoted as g.
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Thus, in matrix notation, the set of least square equations can be written:
Cs = r and
the set of selection index equations as:
Pb =g
where b is the vector of selection index weights.

Multiplication of matrices is a simple extension of matrix by vector multiplication and
can be thought of as multiplying the first matrix by a succession of vectors that make up the
second matrix. MATLAB would produce the matrix product of A and B and put it in
matrix E from E = A*B. Note that usually A*B # B*A. In fact, even if A*B is

conformable, B*A might not be conformable for multiplication.

SOLUTIONS WITH INVERSES
Rule 2) If C or P is square and composed of independent rows (columns), the matrix
equivalent of division in scalar arithmetic can be used to solve for the solution
vector s or b.
In scalar (usual) arithmetic,
2x =4
can be solved by premultiplying both sides by the scalar inverse of 2, that is by (2)'1;
@1@x = @he = 2.
Because (2)'1(2) = 1, then x = 2 is the solution.
In matrix notation, premultiplying both sides by the matrix inverse of C produces the
solution vector;

cles = ¢l
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If C can be inverted, i.e., is a nonsingular matrix, then;
clc=1.
I'is the matrix equivalent of the scalar 1. Note that as in scalar algebra, the identity
(one) vanishes in multiplication: IC = C, Is = s, etc. In fact, I is a matrix with 1's as

diagonal (top left to bottom right) elements and 0's as off-diagonal elements; e.g.,

1000
0100
0010
0001

clc-1-

Thus, to solve Cs = r, then clcs=clris equivalentto Is = Clrsothats = C'lr.

Note that C1 » I/C which has no meaning in matrix algebra.

Finding the elements of the inverse, C'l, from Cis usually accomplished by computer
programs although students in matrix algebra courses often are required to practice on
matrices of order 2x2, 3x3, 4x4, etc. In fact, the command in MATLAB, INV(C) will
produce the elements of the inverse.

Note that constraints often must be applied to LSE or MME to make the rows of the
coefficient matrix independent so that an inverse of C can be obtained. If the rows are
dependent, an inverse does not exist and the matrix is said to be singular. A special kind
of inverse called the generalized or Penrose inverse can be used in those cases, although
care must be taken in interpreting the resulting solutions. In MATLAB, use PINV(C).

Thus, in MATLAB, b = INV(P)*g and s = PINV(C)*r.
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ADDITION (SUBTRACTION)
Rule 3) Addition (subtraction) of two matrices is accomplished by adding (subtracting)
corresponding elements of the two matrices. Thus the matrices must have the

same number of rows and columns to be conformable for addition. In

MATLAB, D = A+B.

SCALAR BY MATRIX MULTIPLICATION
Rule 4) Multiplication of a scalar by a matrix is defined as the multiplication of each

element of the matrix by the scalar. If the scalar is (1-h2)/h2, which for

h2 = 25 is (1-.25)/(.25) = 3, then, for example:

3000
0300
0030
0003

31

This operation in MATLAB would be:

3*EYE(4) .



CHAPTER 3

QUANTIFYING THE SIMPLE MENDELIAN MODEL

This chapter is not necessary for development of selection procedures for traits
influenced by many genes and could be skipped. Nevertheless, examination of simpler
models may provide insight into more complicated models which are based on the same
principles.

The usual genetic model is

Phenotype = Genotypic effects + Environmental effects
P =G + E
The simplest Mendelian model has E = 0 and only three possible genotypes and genotypic
effects for one locus with two alleles, A and a.

In a random mating population, if the gene frequency of an allele, A, at a particular

locus is p and if there is only one other allele, a, with frequency, 1 - p = q, then the

expected frequencies of the three possible genotypes are by the Hardy-Weinberg law

Genotype Frequency = f; Value = y;
AA p? u
Aa 2pq [(u+v)/2} + d
aa q2 v

25
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Abitrary symbolic effects can be assigned to the genotypes as shown. The value d
represents the dominance deviation as a difference of the effect of the heterozygote from
the average effect of the homozygotes. There are several possible kinds of dominance
depending on the size of d: if d = 0, there is no dominance or equivalently there is lack
of dominance or the model contains only additive effects; if d = (u-v)/2, there is complete
dominance, that is, the value of Aa equals the value of AA; and if |d| > (u-v)/2, there is
overdominance, that is, the value of the heterozygote is greater than the value of the AA

homozygote or less than the value of the aa homozygote.

POPULATION MEAN

The definition of the population mean or average, g, is as shown in Chapter 1:
n n
p=(X fiyp/ ¥ f,
i=1 i=1
where n is the number of different genotypes. Usually, Xf; = 1 but will not if certain
genotypes are discarded due to selection.

Application of this formula prdvides the symbolic mean for the simplest Mendelian

model in the case of no selection:

g =v + p(u-v), if d = 0; and

p =v + p(u-v) + 2pqd, if d # 0.
The population average will be maximum when p = 1,ifu > vand d £ (u-v)/2.
If d > (u-v)/2 (overdominance), then the population average will be maximum when

p = {[(u-v)/2] + d}/2d as can be found by equating the derivative of u with respect to p

to zero.
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POPULATION VARIANCE

The definition of the population variance, o2

, as shown in Chapter 1 is:
2 % 2./ 5
o“ = [X fiyi-w)°)/ X
1=1 1-1
If Efi = 1, then
02

2 2
= 2 filyi-w) = By - WP

Application of this formula will yield equations involving p, u, v, and d, as shown in standard

text books on population genetics.

BREEDING VALUE UNDER THE SIMPLE MENDELIAN MODEL

Selection index procedures are primarily aimed toward predicting breeding value.
Breeding value can be thought of as the part of the genotypic effects of an animal that can
be passed to its progeny. In fact, breeding value is defined for quantitative traits as twice
the superiority of an animal that is exhibited in its progeny. The same concept can be
shown for effects at a single locus with two alleles.

The frequencies of progeny of the three parental genotypes under random mating are

described in the following table.

Parent Parent Progeny Frequency
enotype Frequency AA Aa aa
AA p? P q O
Aa 2pq p/2 12 q/2
aa q2 0 p q

The progeny frequencies are from randomly mating a particular parent type to the rest of
the population. For example, Aa x population gives from the gametic arrays the progeny

frequencies,
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[(1/2)(A) + (1/2)(a)] x [(P)(A) + (@)(a)]

Vv
(p/2)(AA) + (1/2)(Aa) + (q/2)(aa) .

The progeny means in symbolic terms for the three parental genotypes are found by
applying the formula for the mean with frequencies to be:

Baa = pu + q{[(u+v)/2] + d},

BAg = -Spu + S{[(u+v)/2] + d} + Sqv,

Hag = P{(u+v)/2] + d} + qv.
These expressions show:
(1) that pp, = (Haa + Haa)/2 for any values of p and d, that is, the mean for progeny of
heterozygotes is the average of the means of the progeny of the two kinds of homozygotes
and (2) that breeding values (progeny means) of the parental genotypes depend on gene

frequency (even if u>v, u4 o may be less than u,, when p is small).

HERITABILITY FOR THE SIMPLE GENETIC MODEL
For the simple genetic model (1 locus, 2 alleles, the heterozygote value equal to the
average value of the homozygotes, i.e., d = 0) with no environmental effects, the regression

of offspring mean on parental value is 1/2 (see formulas in Chapter 1).

Parent Value Frequency Progenv Mean
AA u p2 pu + q(u+v)/2
Aa (u+v)/2 2pq (pu/2) + [(u+v)/4] + (qv/2)

aa v q p(u+v)/2 + qv
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Here, the mean, 4 = v + p(u-v) and the variance of parents is pq(u-v)2/2 = aé, which is
the genetic variance since there are no environmental effects. The covariance of progeny
means and parent values is pq(u-v)2/4 = aé/z and thus the regression of offspring mean
on parent value is 1/2.

The following principles should be noted:

1.  Any kind of dominance will decrease the regression coefficient.

2.  Selection on parents will not affect the regression if the heterozygote has a

value which is the average of the values of the homozygotes (additive model).
3. If there is some form of dominance, selection on the parents will, in general,

affect the regression as can be seen by plotting progeny means against parental

values.

SIMPLE GENETIC MODEL WITH ENVIRONMENTAL EFFECTS

Suppose to the simple genetic model that a random environmental contribution is

2

added that averages zero but has variance ag. Then, phenotype = genotype + environment,

or P = G + E. If there is no correlation between G and E, then phenotypic variance,

012) = oz + oi. In terms of selection, usually the components of P cannot be separated

directly. The environmental effect, E, may mask what is to be evaluated, G.

HERITABILITY DEFINED

Heritability is defined in the "broad sense" as the ratio of all of the genetic variance

to the total variance;

2 _ 2,2 2
h -og/(og+oe).
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With additive gene action (the heterozygote intermediate in value between

homozygotes) for the simple model the covariance between parent and progeny is

( 1/2)(02A). This result can be shown to be true even if environmental variation exits

because the environmental variation is assumed to be random with average value of zero.

If d does not equal 0 (some form of dominance), part of the genetic variance will be

due to the dominance effects, UED and some to additive effects, ozA

If there is some form of dominance, the regression of progeny on parent is reduced.

The covariance, however, between progeny and parent is (1/2)(02A) either with
dominance or with no dominance (see appendix this chapter).

Heritability is defined in the "narrow sense" as the ratio of additive genetic variance

to the total variance;

°§A 2 2 2
h2 = T, where og = ogA + ogD
ag O,

Thus, twice the regression of progeny mean on parent value equals heritability in the
"narrow sense” even with dominance in the simple genetic model with random
environmental effects. The same will be true for quantitative traits influenced by genes at
many loci.

Later chapters show that additive genetic effects are most important since they have
a much greater chance than dominance or epistatic effects of being transmitted from one

generation to the next.
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APPENDIX TO CHAPTER THREE

DERIVATION OF az, O;A’ azD FOR 1 LOCUS WITH 2 ALLELES

Let value of AA = 1, value of Aa = d, and value of aa = 0. The frequency of

A is p and the frequency of ais 1 - p = q. Random mating is assumed.

Total Genetic Variance, cré

Hg = p? + 2pqd
oé = p2 + 2pqd2 +0- (p2 + 2pqd)2
= p% + 2pqd? - p* - 4p>qd - 4p%(q?)d?
= palp(1+p) + 2d(d - 2p? - 2pqd)]
Ifd = 1/2, of = pq/2.

Regression of Genotypic Value, G, on Number of "+" Genes, X, to Define o gA

(Depends on p)

The following table describes frequencies and genetic values associated with number

of positive genes in the genotype:

Genotype Frequency G X
AA p2 1 2
Aa 2pq d 1
aa q2 0 0
2 22 " . . . . . .
o, =r1_0_, the additive genetic variance, is defined as the variance in G due
EA &8
to additive gene effects (i.e., variance in G accounted for by regression of G on X):
2 _ e
o F —_—
A 02

X
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Now evaluate Ogx and ag.
by = 2p
o> = p%@? + 2pq + 0 - (2p)?
= 4p? + 2pq - 4p% = 2pq
Hg = p? + 2pqd
Ogx = 2p2 + 2pqd + 0 - 2p(p? + 2pqd)

= 2p2 + 2pqd - 2p3 - 4p2qd‘

= 2pq(p+d-2pd)
Thus

2
2 _ (00" _ [2pq(p+d-2pd)}?
gA 2 2pq

g
X

2pq(p+d-2pd)®

= 2pq(p2 + d2 + 4p2d2 + 2pd - 4p2d - 4pd2).

The dominance genetic variance is variance in G not accounted for by regression on X:

= p2q[1-p+4d(d-pd-1+p)].

Ifd =1/2, OEA = ogD = 0. With this assignment of genetic values, d =1/2 corresponds

to no dominance, i.e., (VAA *+ Va2)/2 = (1+0)/2 = 1/2.
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COVARIANCE (PROGENY, PARENT) WITH DOMINANCE
The table summarizes parental frequencies and parent and progeny values when the

genotypic values are defined as 1, d, and 0.

Values
Parents Frequency Parent Progeny Mean
AA p? 1 p + qd
Aa 2pq d (1/2)(p) + (1/2)(d)
aa q2 0 pd

Kprogeny = Hparent = Hpopulation = p* + 2pqd
Cov = pA(p + qd) + 2pqd(1/2)(p+d) - (p* + 2pqd)?
= pq(p + d - 2pd)>%,
which is (1 /2)(02A) no matter what the values of p and d are.

In this derivation, the values of the genotypes (1, d, and 0) have been scaled from
general phenotypic values of u, [(u+v)/2] + d', and v by subtracting v from each general
value and then dividing by u-v. Note that the scaled d = (1/2) + [d'/(u-v)] in terms of the
general values. To convert the above results (variances) back to general values, multiply

by (u-v)2.



CHAPTER 4

A SHORT SUMMATION ON POPULATION GENETICS

The principles of quantitative genetics and population genetics are closely linked.
Population genetics is primarily concerned with identifiable alleles and their frequencies
whereas quantitative genetics is primarily concerned with small effects of many
unidentifiable alleles. Causes and effects of changes in frequencies of alleles is a major
common concern of these two related fields of genetics. This chapter summarizes a few of
the more obvious results from population genetics. Texts such as Doolittle (1987), Hartl
(1980), Falconer (1989), provide much more complete development of the principles of
population genetics. This chapter could be expanded in lectures if the topics of quantitative
and population genetics are covered in one course. This chapter should be skipped if the

course is limited to selection for quantitative traits.

THE HARDY-WEINBERG LAW

If in a large population, p is the frequency of gene A and q is the frequency of the
other allele, a, then after one generation of random mating the genotypes will have and will
continue to have in future generations the frequencies p2 for AA, 2pq for Aa, and q2 for aa.

Note that p + q = 1. Hence,q = 1- p.

35
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This principle can be extended to the case of n alleles, A, (i=1, .., n), with
frequencies p;, by computing the frequencies of the genotypes obtained from multiplying the
gametic array for males by the same gametic array for females, (pjA; + ... + PAp).
The genotypes and their frequencies will be:

homozygotes:  A;A; with frequencies p% fori =1,..n
] heterozygotes: A]A] with frequencies 2pipj for alli »j.
Again, ¥ pj =1
i=1

ESTIMATION OF GENE FREQUENCIES

The general formula for the

Number of that allele

frequency of some allele = .
Total number of genes at that locus

The problems of estimation are illustrated in the following special cases.
(1) Dominance:
The frequency of a recessive gene in a random mating population can be

2

estimated from the knowledge that a fraction q“ of the population is expected

to be homozygous recessive. Then,

q = ynumber recessive types/total number of animals ,
andp=1-q.
In the case of multiple alleles with complete dominance, the frequency of the most
recessive allele is estimated first. For example, suppose Aq is dominant to Ay and A3, and

A,y is dominant to Aj as shown below.
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Genotype Phenotype Expected Frequency
A1 5
A1Ay Aq PT + 2P1Pp + 2p1P3
A1A3
Aghg 5
AgxAz Ay P + 2pyp3
2
AzAg Az P3

Then from the last equation, p3 = Jnumber A3 type/total number. Put the estimate

of p3 into the second equation, p% + 2pyp3 = number A, type/total number,

and solve for p,. Next substitute the estimates of p3 and p, into the first equation,

p% + 2p1py + 2pyp3 = number A, type/total number and solve for p; or find p; by
difference since p; + p, + p3 = l,orp; = 1-p, - P3.

(2) Incomplete dominance:

With incomplete dominance, heterozygotes can be distinguished from

homozygotes so that the gene frequencies can be found from the general

formula whether or not the population is randomly mating. For example, with

three alleles,
Number Aj alleles

P1 = Total number of genes at the A locus

Each A;A; genotype contributes two A alleles; each AjA, genotype contributes

one A allele; and each A{A3 genotype contributes one A allele to the number of A genes.

Then,

2(number of AjA1) + number of AjA, + number of AjA3
P1 =

b

2(total number of animals)

and p, and p3 may be estimated similarly.
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FREQUENCIES OF COMPOSITE GENOTYPES

The frequencies of composite genotypes in a random mating population which is at
equilibrium with respect to linkage are equal to the products of the single locus frequencies.
For example, if the frequencies of A; and A, alleles are p; and p,, respectively, and the
frequencies of By and B, alleles are ry and r), respectively, then the frequencies of the

composite (two-locus) genotypes at equilibrium will be:

Genotypes Frequencies
A1A1B1By piry
A1A(B1By piCarry)
A1A1B,B, PIT5
A1AB1B4 (2ppy)7
A1A2B1By (2p1p2)(2ryry)
A1A2B,By (2p1P))
AxArB1By pors

AgAgB 1By P(2ryry)
AgAzB)B) P55

Extension to more than two alleles per locus or more loci follows the same pattern.

EFFECT OF SELECTION ON GENE FREQUENCIES

Selection may change the frequency of a certain allele in a population. Gene
frequency after selection (among the survivors and with random mating of the survivors
among the next generation) depends on the fitness of the genotypes and allelic frequencies

in the current generation. Fitness of a genotype is defined as the proportion of the genotype
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that reproduces relative to the other genotypes. Let s be the fraction of AA genotypes, r
be the fraction of Aa genotypes, and t the fraction of aa genotypes that do not reproduce,
where 1 2 s, r and t 2 0. By counting alleles, the frequency of allele a after selection is

expected to be

_ number of "a” genes among survivors
2(number of survivors).

This expression has specific forms for special kinds of selection as described later. The

change in allelic frequency from one generation to another is the difference in allelic
frequencies between the generations, i.e.,
Aq =q,-q,1,

where the subscripts refer to generations n and n-1.

Special Cases
In the following special cases, some simplifications may be made.
(1) No homozygous recessive individuals reproduce (zero fitness for the aa
genotype; s = 0, r = 0, t = 1).
The composition of the initial generation (n = 0) can be described:

Relative Frequency

Genotype Frequency Fitness of Survivors
AA p2 s =1 p2
Aa 2pq lo =1 2pq
aa q2 1-t=0 0
T(;xl 1 p2 + 2pq=—1 - q2
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Then, by the general equation because only the Aa genotype contains an a allele

_ number of a alleles in survivors
total number alleles in survivors

q = 2pq(number of animals) - 9

2(p2 + 2pq)(number of animals)  1*4

If this procedure is followed through n generations, the frequency of the allele
a will be g, = q/(1 + nq), where q was the original allelic frequency of
the recessive allele. From this expression, the number of generations, m,
required to go from an allelic frequency of q to one of g, is found to be
n = (1/q,) - (1/9).
(2) Selection in favor of heterozygotes (r = 0)

The composition of the initial generation (n = 0) before and after

selection is:

Relative Frequency

Genotype  Frequency Fitness of Survivors
AA p2 1-s pz(l-s)
Aa 2pq 1 2pq
aa q2 1-t q2( 1-t)
Total 1 T 1sp2tqZ

Application of the géneral procedure for finding the new allelic frequency, qy,

gives




()
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The change in allelic frequency from the zero generation to the next is:

Aq = PAGPta)

1-sp 2-tq 2

When aq = 0, there will be no change in allelic frequency from the (n-1)St
generation to the nth generation and the population will be at equilibrium.
As seen from the numerator, equilibrium occurs when sp - tq = 0.
Thus, equilibrium allelic frequency will be reached when p = t/(s+t) and
q = s/(s+t).
Partial selection against homozygous recessives (s = 0, r = 0, t > 0)

The composition of the initial generation before and after selection is:

Relative Frequency

Genotype  Frequency Fitness of Survivors
AA p? 1 p?
Aa 2pq 1 2pq
aa q2 1-t q2( 1-t)
Taal T - l—tq2

The allelic frequency, gy, in the survivors is by the general procedure

q1 =

Aq

1l
e
|
0
|
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(4) Selection against heterozygotes (s = 0, r > 0, t = 0)
The composition of the initial generation before and after selection is:

Relative Frequency

Genotype Frequency Fitness of Survivors
AA p* 1 p?
Aa 2pq 1-r 2pq(1-r)
aa q2 1 q2
T-o_t.al l_ T 1-2pqr
By the general procedure, the allelic frequency, qy, in the survivors is
q] = %%, and
aq =q) - q = ———rplq_(igp:ll) .

(5) Changes in allelic frequencies with other combinations of fitness values can be

worked out similarly by the general procedure.

DETECTION OF CARRIERS OF RECESSIVE ALLELES

The confidence of detection of a heterozygote for a recessive allele (i.e., a carrier of
the recessive gene) depends on the probability of obtaining at least one affected offspring
in n offspring if the suspected carrier is actually a carrier. This probability is one minus the
probability of obtaining all normal offspring in n offspring.

A general testing procedure is to mate a suspected carrier to a group of females
which produce a fraction, p, A alleles and a fraction, q, a alleles. Then, if the suspect is
really a carrier, the probability that all n offspring will be normal is [1 - q/2)]™ and the
confidence of detection (i.e., proving the animal is a carrier) is 1 - [1 - (g/2)]™. Usually

testing is for males because of their potentially high reproductive rate relative to females.
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Some special cases are:
(1) Mating a carrier male to known homozygous recessive females
The probability of obtaining all normal offspring is (1/2)™.
Therefore, the "confidence" of detecting him as a carrier is 1 - (1/2)™.
Note that q = 1 and that 1 - (q/2) = 1/2.
(2) Mating a carrier male to known carrier (heterozygous) females
The "confidence" of detecting him as a carrier is 1 - (3/4)™.
Note that ¢ = 1/2 and that 1 - (q/2) = 3/4.
(3) Mating a carrier male to his own daughters.
The "confidence" of detecting him as a carrier is 1 - (7/8)". Note that
q = 1/4 and that 1 - (q/2) = 7/8. This probability is calculated under the
assumption that the dams were all homozygous for the normal allele. With this
system, recessive alleles at all loci will have the same chance of detection.
(4) Mating a carrier male at random in a population where the frequency of the
recessive gene is q‘ in the previous generation
The "confidence” of detecting him as a carrier is 1- [(2+q )/2(1+q )™

Note that q = q'/ (1 +q') since none of the homozygous recessive females will

be mated.

What should be remembered about testing for carriers is that even one verified
affected offspring marks a suspected carrier as a carrier. Even if all offspring are normal,
that will never completely rule out the possibility a male is a carrier, even though the
probability of detection may be quite high.

Table 4.1 shows the confidence of detection of carrier males for the four testing

systems. A further discussion of method 4 follows.



TABLE 4.1. CHANCES OF DETECTING A CARRIER MALE FOR VARIOUS TYPES OF MATINGS

Detects all

Detects only one lethal lethals carried Detects all lethals depending on_ frequency
homozygous known random 1n22%P%$ftlgn
Numbey of recessive carrier own - Efi:—:—)
Progeny females females daughters lethal Gene Frequency = q* i Apgez ous generation

n 1-(1/2)" 1-(3/4)" 1-(7/8)" .2 .1 .05 .01 .001
1 .50 .25 .12 .08 .05 .02 .00 .00

2 .75 A .23 .16 .09 .05 .01 .00

3 .88 .58 .33 .23 .13 .07 .01 .00

4 .94 .68 L4l .29 .19 .09 .02 .00

5 .97 .76 .49 .35 .21 .11 .02 .00

6 .98 .82 .55 .41 .24 .13 .03 .00

7 .99 .87 .61 46 .28 .16 .03 .00

8 1.00 .90 .66 .50 .31 .18 .04 .00

9 .92 .70 .54 .34 .20 .04 .00
10 .94 .74 .58 .37 .21 .05 .00
15 .99 .87 .73 .50 .30 .07 .01
20 1.00 .93 .82 .61 .38 .09 .01
50 1.00 .99 .90 .70 .22 .02
100 1.00 .99 .91 .39 .05
200 1.00 .99 .63 .10
300 1.00 .77 .14
400 .86 .18

500 .92 .22

Xapujy uondajas
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ARTIFICIAL INSEMINATION AND UNDESIRABLE RECESSIVES

Method 4 of the preceding section can be used to decrease the frequency of all
undesirable genes by progeny testing all males at random in the population before heavy use
through artificial insemination. The following describes how such a program would work
for dairy cattle where Al is widely used.

The essential question is, "Can Al be used to find carrier bulls before they spread
undesirable genes?" The answer is yes since any good young sire sampling program will
provide for each young bull producing at least 200 progeny. In the dairy situation, 200
calves may yield 50 or so production-tested daughters. At the same time, the 200 progeny
will provide an excellent test of whether the bull is a carrier of any undesirable recessive
genes.

What does this mean in terms of numbers of affected calves? An Al program which
observes 200 tested progeny can be compared with what would happen without AI. The
effect of Al testing with 200 progeny versus no testing is shown in the Table 4.2.

With all the expressed fears that AI may sabotage a population by spreading an
undesirable allele throughout the population, it is more than a little reassuring to know this
is unlikely to happen. More reassuring is the knowledge that a properly set up young sire
sampling program in Al will actually protect a population against undesirable genes and
reduce the number of affected calves.

A more technical description follows on how to calculate expected frequencies of
affected calves of future generations with an Al testing scheme with various numbers of test

matings and initial gene frequencies.



TABLE 4.2.

NUMBER OF AFFECTED OFFSPRING WITH NO PROGENY TESTING AND WITH TESTING WITH 200 PROGENY

No

Al

No

Al

No

Al

No

Al

No

Al

testing
test
testing
test
testing
test
testing
testing
testing

testing

Before Testing

250,000
250,000
40,000
40,000
10,000
10,000
2,500
2,500
100

100

No. of affected progeny per million progeny born in generation
1 2 3 4 5 -- 10
111,111 62,500 40,000 27,778 20,408 -- 6,944
0 0 2 28 55 -- 9
27,778 20,408 15,625 12,346 10,000 -- 4,444
0 2 28 55 43 -- 7
8,264 6,944 5,917 5,102 4,444 -- 2,500
1 23 55 46 29 -- 6
2,268 2,066 1,890 1,736 1,600 -- 1,111
20 54 47 30 20 -- 4
98 96 94 92 91 -- 83
37 23 16 11 8 -- 3

Xapuy uon3aag gy
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THE EFFECT OF TESTING BULLS IN Al ON THE FREQUENCY OF RECESSIVE
ALLELES

As the frequency of a recessive allele drops under the conditions of Al, the
confidence of detecting a carrier by random mating goes down. What will be the effect of
the reduced confidence on selection against the gene?

The solution can be obtained by computing the allelic frequencies for several
generations. Males will be progeny-tested on n females. All males and females which are
homozygous for recessive alleles will be culled. Heterozygotes have the same fitness as the
"normal” homozygotes. Let P = frequency of the normal allele, A, in males surviving
selection, g = frequency of the other allele, a, in males surviving selection, P; = frequency
of A in females surviving selection, Qj = frequency of a in females surviving selection, and
j is the generation number. The frequency of genotypes in the next generation can be found
by expanding (ij + qja)(PjA + Qja). The composition of the next generation before and

after selection is:

Males Females
Frequency Frequency
Genotype Frequency  Fitness Survivors Frequency Fitness  Survivors
AA PiF ! PiF PFj ! PiF]
Aa PP e Qg pQray 1 POl
aa qJQJ 0 0 q]Q] 0 0
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a;(i=j+1) is the probability of not detecting a carrier by random mating to the
population. Males are tested in the population of contemporary females.
o = (1 -.SQj + l)n, where n is the number of progeny and Qj +1 Is the frequency of a among
the surviving females. The frequency of a among the selected males is
G+1 = (2i/2)(PjQ;+qiP)/[pjFj + i(pjQj+qiF)]-
The composition of the next generation can be found by expanding
(pj+1A + Qj+1a)(Pj+1A + Qj+la)-

Note that this is a repeating pattern and can be easily programmed for a computer.



CHAPTER 5§

GENES IDENTICAL BY DESCENT--THE BASIS OF GENETIC
LIKENESS

Individuals may have genes in common from a common ancestor. Such genes are
identical by descent. If genes are identical but not necessarily from a common ancestor,
they are identical in state. The term allele may be more appropriate but the term gene will
be used here.

The concept of identity by descent is an approach to the complications of multi-
allelic, multi-loci gene systems which affect quantitative traits. With the identity by descent
approach, there is no need to know how many alleles are at a locus, the value of each allele,
the number of loci which have genes influencing the quantitative trait, or the gene
frequencies. This approach was formulated by Malécot (1948) and about the same time by
C. C. Cockerham and C. R. Henderson, who further developed the concept. The identity
by descent approach is to calculate probabilities of genes, genotypes and non-allelic
combinations of genes being identical because of common ancestors.

Two limitations of the probabilistic method are:

1.  Calculations of probabilities must begin at a specified base period even though

most life probably originated from a small number of genes.

2. The method estimates how many genes are identical by descent between two

animals only on a probability basis.

49
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The notation is that an animal will have genes bibj at the b locus where the subscript
describes the origin of the gene. The basis for calculation of relationships is the probability
that a random gene at any locus, say the b locus, is identical by descent for a pair of
individuals. At some arbitrary base period, the b genes of the common ancestor are tagged
and then the probability that the b genes of the two individuals will be common by descent
is computed.

Let the genotypes of two animals at the b locus be bibj and b b, where the
subscripts refer to the origin of the gene. The probability that the genes at a locus are
identical by descent between two individuals is defined by comparing the origins of the first
gene of the first animal with the first and second genes of the second animal, and the second
gene of the first animal with the first and second genes of the second.

Thus, for the four possible combinations:

Probability (b; = b)) = 0ifi »m; = 1ifi = m,

Probability (b; = b)) = 0ifi#n; = 1ifi =n,

Probability (bj =by) =0ifj#m; =1ifj=m,

Probability (bj =b,)=0ifj#n; =1ifj=n.
The probability that a random gene at this locus is identical in two animals is the average
probability for these four comparisons, i.e.,

[P(i=m) + P(i=n) + P(j=m) + P(j=n)]/4.

In fact, this expression is the same as the probability that a random gene from one animal
and a random gene from the other animal will be identical by descent.

As a specific example, suppose that two unrelated noninbred animals are mated, i.e.,

the mating is byb, x bgb,. The possible offspring are b1bs, b1by, bybs, byby. The fraction
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of random pairs of genes being identical between any progeny, say b;bs, and any parent,

say bqb,, is:

P(b; = by) = 1
P(b; = by) = 0
P(by = b)) = 0
P(by = by) = 0

with the average being 1/4.

ADDITIVE RELATIONSHIP

The relationship of an individual with itself is considered generally to be one. The
"a" or additive relationship between two individuals is defined as twice the fraction of genes
identical by descent so that the additive relationship of a noninbred animal with itself is one.
As shown in the appendix to Chapter 6, because each locus has two additive gene effects,
the additive relationship is the measure of the fraction of additive gene effects in common
between relatives. In a noninbred population, the additive relationship is equal to the
coefficient of relationship. The coefficient of relationship is also equal to the correlation
between additive effects as will be described in Chapter 6.

The coefficient of relationship between animals i and j is:

nij = aij/yfaiiaj)

where ajj is the additive relationship between i and j, a;; is the additive relationship of i to
itself (a;; = 1 if noninbred) and aj; is the additive relationship of j to itself.  Thus, the

additive relationship is sometimes called the numerator relationship because the additive

relationship is the numerator for the coefficient of relationship. The following table
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describes the probabilities for most common kinds of comparisons for pairs of individuals.

PROBABILITIES OF GENES IDENTICAL BY DESCENT

Fraction Identical Additive
Comparison by Descent Relationship
blbl with blbl 1 2
(completely inbred with self)
blbl with b2b2 0 0
(noninbred with self)
b1b2 with b1b3 1/4 1/2
b1b2 with b3b4 0 0

Parent-progeny Relationship

Unrelated and noninbred parents, b, b, and b3by, have potential progeny b1bs, b1by,
b2b3, and b2b4. From the table above, the fraction of genes identical by descent for any
one parent with bybs is 1/4; with b;by, 1/4; with bybs, 1/4; and with byby, 1/4. The

average is (1/4 + 1/4 + 1/4 + 1/4)/4 = 1/4 and the additive relationship is 1/2.

Grandparent-grandprogeny Relationship
Two unrelated and noninbred animals, bb, and b3by, have potential progeny b;bs,
b1b4, b2b3, and b2b4. One of these progeny chosen at random, say b1b3, is mated to an

unrelated animal, bgbg, chosen from the population. The potential genotypes of their
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progeny are bybs, b1bg, b3bg, and bybs. Now compare genes of either grandparent, say
byb,, with genes of the grandprogeny. The fraction of genes of that grandparent that are
identical by descent with bybg is 1/4; with byb¢, 1/4; with bsbs, 0; and with b3bg¢, 0. The
average is 1/8.

The same average would be found for the grandparent, that is b;b,, with the other
12 possible grandprogeny types. In one-half the comparisons the grandprogeny and
grandparent are unrelated in the sense that no genes are alike at that locus. Since the
probability of no genes in common at one loci is 1/2, the probability of no genes in common
at n loci is (1/2)" for grandparent and grandprogeny pairs which is not a very large
probability, even for number of loci as small as four. The average identical by descent over
all loci is likely to be quite close to the calculated probability of genes being identical by

descent.

Full sib Relationship

Two unrelated and noninbred animals, b1b2 and b3b4, have progeny b1b3, b1b4,
bybs, and byby. When the full sib progeny are randomly compared, there are 16 different
combinations of pairs of full sibs, each having equal frequency. The values in the table are

the probabilities of genes being identical for each of the 16 comparisons.

Possible Genotypes of
2nd Full Sib with Frequencies

1/4bbs  1/4bjb,  1/4bgby  1/4byby

Possible 1/4 bybs 1/2 1/4 1/4 0
Genotypes of 1/4 byby 1/4 1/2 0 1/4
1st full sib 1/4 bybs 1/4 0 1/2 1/4

with frequencies 1/4 byby 0 1/4 1/4 1/2
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The average will be =fX;. For all 16 cells, f; = 1/16. The average fraction of genes
identical by descent = (1/16)[(4)(1/2) + (8)(1/4) + (4)(0)] = 1/4 as before. Note that
although the average fraction of genes identical by descent is 1/4 that 1/4 of the
comparisons have probability 1/2 (an identical genotype), 1/2 have probability 1/4, and 1/4
have probability 0. One-fourth of the comparisons have no genes in common at one locus,

and therefore the probability of no genes in common at n loci = (1/4)? for full sibs.

Half-sib Relationship

When animal b;b, is mated to b3by, they have potential progeny b;bs, biby, bybs,
and byby with equal frequencies. When animal byb, is also mated to bgbg, they have
potential progeny bybs, b1b¢, bybs, and bybg. The values in the table are fractions of genes

identical by descent for each of the 16 possible pairs of half-sibs.

Possible Genotypes of
1st Half-Sib with Frequencies
1/4 bbby 1/4byby  1/4byby  1/4 byby

Possible 1/4 bybs 1/4 1/4 0 0
Genotypes of 1/4 bybg 1/4 1/4 0 0
2nd Half-Sib 1/4 bybs 0 0 1/4 1/4

with frequencies 1/4 bybg 0 0 1/4 1/4

The average fraction of genes identical by descent is:
(1/16)[(8)(1/4) + (8)(0)] = 1/8, and the additive relationship is 1/4. One-half of the
comparisons have no genes in common at one locus, and the probability of no genes in

common at n loci = (1/2)™.
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Summary of Most Common Relationships

Probability Probability No
Ave. Fraction of Genotype Genes Identical
Relationship Identical Identical at n Loci
Parent-progeny 1/4 0 0
Grandparent-grandprogeny 1/8 0 (1/2)2
Full sibs 1/4 1/4 1/t
Half sibs 1/8 0 (1/2)"

DOMINANCE RELATIONSHIP

The probability of an identical genotype at one locus by descent is the probability
that the pair of genes at one locus for two animals identical by descent, i.e., for relatives
with genotypes bibj and b b, P(genotype identical) = P(bibj = b,by)- The only pairs
in the above table that can have a genotype at one locus identical by descent are pairs of
full sibs, e.g., byby with b{bs. The dominance relationship between a pair of animals is
defined as the probability of genotypes being identical by descent.

The following is an example of computing average probability of genotypes in
common for full sibs.

Let the parents be unrelated so that their symbolic genotypes and those of their full
sib progeny can be represented as:

Parents: b1bz’ b3b4

Full Sib Progeny (with frequencies):
1/4 byb3, 1/4 byby, 1/4 bybs, 1/4 byby

The average probability that bibj = b,b,, is the average of all 16 comparisons as shown in

the following table.
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Possible Genotypes of
2nd Full Sib with Frequencies

1/4 bibz 1/4 bibg 1/4 bybs 1/4boby

Possible 1/4 bybs
Genotypes of 1/4 biby The frequency of each comparison is
1st Full Sib 1/4 bybs (1/4)(1/4) = 1/16.
with Frequencies 1/4 byby

Then, the average P(genotypes identical at the "b" locus) is:

= (1/16)[P(b1b3=b{b3) + P(byb3=b;by) + P(byb3=byb3) + P(b1b3=byby) +
P(b;by=bib3) + P(bjbg=b by) + P(b1bg=byb3) + P(bby=bsby) +
P(byb3=byb3) + P(byb3=biby) + P(byby=byb3) + P(bybz=byby) +
P(bybg=b1b3) + P(bybg=biby) + P(byby=byb3) + P(byby=byby)]

=(1/16)(1+0+0+0+0+1+0+0+0+0+1+0+0+0+0+1)=1/4

Only one of four comparisons are expected to have genotypes at the "b" locus
identical by descent. The average fraction of all loci with genotypes identical for pairs of
full sibs is also one-fourth.

Dominance effects are defined as the interaction of two genes at one locus. Of the
relatives shown in the summary table, only full sibs can have dominance effects contribute
to likeness of pairs of relatives. Dominance effects occur when the value of bibj is not the
average value of b; plus the average value of bj. The dominance relationship between
noninbred animals A and B, d ARy €an be found from the additive relationships among the

parents of A and B as will be seen.
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INBREEDING COEFFICIENT

The coefficient of inbreeding, F, is defined as the probability that two genes at one
locus will be identical by descent when averaged over all loci, i.e., for an animal with one
locus and genotype bibj’ F = P(bi=bj). The two genes will be identical only if the parents
have genes identical by descent. The expected frequency of two genes identical by descent
at one locus is equal to the probability that each parent will contribute an identical gene,
i.e., the probability of pairs of single genes being identical between the parents. Therefore,
Fp = (1 /2)(asd) where p, s, and d refer to the progeny, sire, and dam, respectively, and
app = 1+ (1/2)(asd)' Fp is the inbreeding coefficient which also corresponds to the

fraction of loci having both genes identical by descent.

SOME USEFUL IDENTITIES IN WORKING WITH ADDITIVE AND DOMINANCE

RELATIONSHIPS
If animals A and B have parents AS, Ap and BS, B, respectively, then usually
aAB = (1/4)(apgBg * 2AgBp * 2ApBg * 2ApBp)-
As shown in the appendix,
azB = (1/2)(aABS + aABD) if A is older than B.
or equivalently app = (1/2)(ag Ag * 2B AD) if B is older than A.
These equalities are the basis for computing additive relationships by the tabular
method.
The dominance relationship can also be computed from the additive relationships
among the parents even when the parents are inbred if the animals are themselves

noninbred. As shown in the appendix,
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daB = (1/4)(aagBg 2 ApBp, * 2AgBp) 2ApBg)-
Also as just seen, the inbreeding coefficient for an animal is one-half the additive
relationship between its parents,

Fp = (1/20(@pgAp) 5 FB = (1/2)(2BgBp) »

and an animal's additive relationship to itself is

aps = L+ FA =1+ (1/2)(3ASAD) ;agg = 1 + FB =1 + (1/2)(aBsBD).

EXPANSION TO MORE THAN ONE LOCUS

The probability of a pair of nonallelic genes being alike in two individuals by descent
is P(genes at first locus are identical by descent) x P(genes at the second locus are identical
by descent). This pattern can be expanded to trios, etc., of nonallelic genes.

The probability of a particular combination of an allelic pair of genes (a genotype)
and a gene at another locus being identical by descent in two individuals is
P(the genotypes at one locus are identical) x P(genes at the other locus are identical).

The probability of a genotype at one locus and a genotype at another locus being
common by descent in two individuals is P(first locus genotype is alike) xP(other locus
genotype is alike). However, these probabilities are equal. Thus, the probability of
genotypes being common at two loci is P(genotype in common) squared or the square of the
dominance relationship.

The expansion to higher order combinations can be done similarly.

To apply these principles, only two measures of relationship are needed:
aij’ the additive or a relationship between individuals i and j which is twice the fraction of

single genes which are identical by descent (this will be the numerator of the coefficient of
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relationship), and dij’ the probability that individuals i and j have a genotype at one locus
(an allelic pair of genes) identical by descent (this is called the dominance or d
relationship).

Many introductory texts describe how to calculate relationships by the method of
tracing paths. That method is quick and easy for simple relationships and for few animals.

A more powerful method described next is the tabular method (Cruden, 1949; Emik and

Terrill, 1949).

TABULAR METHOD OF COMPUTING a5 AND dij

The easiest and safest method of computing additive relationships is the tabular

method:

1. Determine which animals to include in the table. Include all animals after the
oldest or base generation is chosen. Put them in order by date of birth, oldest
first.

2. Write the names or numbers of the animals in order of birth across the top of
the table (the columns) and along the side of the table (the rows) as shown in
the example which follows.

3. Write above the number of the animals the numbers of their parents, if known.

4. Puta 1in each of the diagonal cells of the table, such as row 1, column 1; row
2, column 2; etc. The one is the animal's basic relationship to itself unless it
is inbred. For the base generation animals, enter their relationships to each
other or assume them to be zero, and if known, add their inbreeding

coefficients to the diagonals.
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5. Begin at the diagonal of each row which now has a 1 in it. Add to this 1, one-
half of the relationship between the animal's parents. This is the inbreeding
coefficient which will often be zero. Compute the off-diagonal cells by rule 6.

6. Compute entries for each off-diagonal cell of row 1 according to the rule of 1/2
the entry for the first parent in this row plus 1/2 the entry for the second parent
in the row. When the first row is finished, write the same values down the first
column.

7. Continue as before for the next rows and columns until finished, always
remembering to do a row at a time and to put the same values down the

corresponding column before going to the next row.

Example

The following is an example of the ayj and dij relationships for paternal half-sibs A

and D.

A/B
\C
e
\
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B-C B-E
B C E A D
B 1 0 0 12 12
c o 1 0 12 0
E 0 0 1 0 12
A 12 12 0 1 14
D 1/2 0 1/2 1/4 1
apa = (1/2) (app + apg) = (1/2) (1 + 0)
app = (1/2) (aBB + aBE) - (1/2) (1 + 0)
aca = (1/2) (aCB + acc) - (1/2) (0 + 1)
acp = (1/2) (aCB + aCE) - (1/2) (0 + 0)
apa = (1/2) (agp + agg) = (1/2) (0 + 0)
agp = (1/2) (aEB + aEE) - (1/2) (0 + 1)
ags = 1+ (1/2) (agg) = 1+ (1/2) (0)
app = (1/2) (app + app) = (1/2) (1/2+0)
app = 1+ (1/2) (app) = 1+ (1/2) (0)

1/2

1/2

1/2

1/2

1/4

The dominance relationship for non-inbred animals can be found from the additive

relationships among the parents, e.g.,

dap = (1/4) (agg x acg + acg x agp) = (1/4) (1 x 0+ 0 x 0) = 0.
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APPENDIX TO CHAPTER FIVE
PROOFS OF IDENTITIES FOR PROBABILITIES BY DESCENT

A. Probability of genes identical by descent: (Malécot, 1948)
1.  Definition: Let the pair of animals, A and B, have genotypes bibj and by b,
representing symbollically all loci, then
P(random pair of genes identical) =
AR =% [P(i=k) + P(i=¢) + P(j=k) + P(j=2)]

2. Definition: The additive relationship, appg = 2aap.

B. Probability of genotypes identical by descent:
1. Definition: Let Agand Ap, be the parents of A and Bg and By be the parents
of B with genotypes bibj for A and byb, for B, then
P(genotype identical) = dyg = P(bibj = byb,).
2. Computationally, dag =1/4(a AgBg * 2ApBp * 2AgBp) * aADBS) for
non-inbred animals:
P(bibj = byb,) = P(Ag contributes b; to A and Bq contributes b, _ to B) x
P(Ap contributes bj to A and B, contributes bj= ¢ 10 B)
+ P(Ag contributes b; to A and B, contributes b~ to B) x
P(Ap contributes bj to A and Bg contributes b;_ , to B)

J
But, P(Ag contributes b; to A and Bg contributes b; to B)

= P(genes identical by descent for Ag and Bg)) = « AgBg"

Similarly for the other probabilities.
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Thus

P(bibj = bkbf.) = aASBS x aADBD * aASBD X aADBS
= (1/4) [aASBS X 3ApBp * aAgBp * aADBS]
The four additive relationships can be found from the relationship table.

C. The inbreeding coefficient, F 4, is the fraction of loci with genes identical by descent for
animal A.
By definition, F of the loci of A have @ = 1 and 1 - F of the loci have @ = 1/2,
i.e., F of the loci are of the form bibi with @ = 1 and 1-F of the loci are of the
form bibj with @ = 1/2.

1. Thus the average fraction of genes identical for A with itself is:

"

ap o = P(genes identical) = (F)(1) + (1-F) (1/2) = 1/2 + (1/2)F and

app = 2apa = 1 + F, that is, the numerator or additive relationship of an

individual to itself is 1 + F.
2. If Sis the sire of A and D is the dam of A, then F = (1/2) agp.
Let the genotypes be bibj for A, byb, for S, and b b, for D.
By definition apa = (1/4) [P(i=i) + P(i=j) + P(j=i) +P(j=j)]
= 1/2 + (1/2) P(i=j)
Thus F, = P(i=j).
But P(i=j) is ag since b; must come from one parent and bj from the other,

ie., P(i=j) = (1/4) [P(k=m) + P(k=n) + P(¢=m) + P(¢=n)]

= %SD
Therefore, Fp = egp = (1/2) agp,
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D. The tabular method of computing relationships depends on the fact that if B has
parents B_ and Bpy, then a, g = (1/2) (aABS + aABD)-
Let the symbolic genotypes be bibj for A, byb, for Bg and b,b,, for Bp,.
The possible and equally likely genotypes of B are:
Bl, bkbm;
B2, bkbn;
B3, b ebms and
By, byby.
By previous definition,

aap = average of °‘AB1’ °‘AB2’ °‘AB3’ °‘AB4 so that:

aap = (1/4) { (1/9)[P(i=k) + P(i=m) + P(j=k) + P(j=m)
+ (1/4) [P(=k) + P(i=n) + P(j=k) + P(j=n)]
+ (1/4) [P(i=¢) + P(i=m) + P(j=¢) + P(j=m)]
+ (1/4) [PGi=t) + P(i=m) + P(i=t) + PG=n)]}
After combining and rearranging:
aap = (1/8)[P(i=k) + P(i=¢) + P(i=m) + P(i=n) + P(j=k) + P(j=¢) + P(j=m) + P(j=n)]
But  app - (1/4)[P(i=k) + P(i=¢) + P(j=k) + P(j=¢)] and
apBp = (1/4)[P(i=m) + P(i=n) + PG=m) + P(=n)}

Thus apg = (1/2) (O‘ABS + aABD) and appg = (1/2) (aABS + aABD)'



CHAPTER 6

GENETIC VALUES AND GENETIC COVARIANCES

Quantitative geneticists have followed the nomenclature of statistics and the logic of
effects of different types of gene combinations to define several kinds of genetic effects.
These types include single gene effects which generally are most important and effects of
gene combinations such as a gene pair at one locus (the genotype) and a gene pair with the
genes at different loci. The potential number of combinations of more genotypes and genes
at separate loci is nearly infinite. In introductory texts the combinations are put into two
groups: 1) single gene effects which together sum to breeding value or additive genetic
value and 2) all other genetic effects which are called epistatic or interaction effects. In this
chapter the theoretical partition of genetic effects into as many combinations as might be
needed will be discussed, even though one type of effect is usually of primary importance,
the additive gene effects. Two other kinds of effects have received some practical attention,
dominance (the gene pair at one locus) effects, and additive by additive (gene pairs with the
genes at different loci) effects. The definitions also lead directly to describing the genetic

covariance between records of relatives with specified additive and dominance relationships.

DEFINITION OF GENETIC VALUES
An additive gene effect is defined as the average replacement value of that gene, i.e.,

if that gene replaces the average gene, the change in value is the additive genetic effect of

65
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that gene. Thus, if two of that gene are added, the change in value will be twice the
additive effect of adding one gene. The sum over all loci of all additive genetic effects is
the additive genetic value, G 4, of the animal.

A dominance genetic effect is defined as the average replacement value of a
particular gene pair at one locus as a difference from the additive genetic effects. The sum
over all loci of all dominance genetic effects is the dominance genetic value, GD, of the
animal.

An additive by additive genetic effect is defined as the average replacement value of
a pair of non-allelic genes--the specific effect of a gene from one locus and a gene from
another locus as a difference from the additive genetic effects of the genes. The additive
by additive genetic value, G5 5, of an animal is the sum of all specific effects of non-allelic
gene pairs.

An additive by dominance gene effect is defined as the average replacement value
of a gene at one locus and a gene pair (genotype) at another locus as a difference from the
additive, dominance, and additive by additive genetic effects. The sum of all such effects
is the additive by dominance genetic value, G AD of an animal.

Similarly, higher order genetic effects can be defined, e.g., additive by additive by
additive and additive by dominance by dominance. These different types of genetic effects
are defined to be independent and to have average values of zero in an unselected
population.

The total genetic value of an animal is the sum of the various genetic values:

G =Gp +Gp+Gpp+Gap +Gapa *
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If these values could be measured separately, variances for each could be computed
as for any other variable. Whether or not they can be measured, a variance can be
hypothesized for each kind of genetic value. In fact, since the various genetic values are
defined to be independent, total genetic variance is the sum of the variances of the

component genetic values:

2 2 2 L2 .2
°G " °Gp " %Gp " °Gaa " %Gap T %Gaaa "

A simpler but less symbolic notation for the components of genetic variance is based

2 . . : .
on g where i refers to the number of single nonallelic genes and j refers to the number

of allelic pairs (genotypes) contributing to the genetic effect. This notation is summarized

as follows:
Gene action Contribution to genetic variation
sum of effects of symbols jargon
single genes: ay, ag, by, by, ete. °2GA G%O additive genetic variance
allelic pairs: a1y, ¢{Cs, etc. UZGD 0(2)1 dominance genetic variance
non-allelic pairs: albl’ a,Cs, etc. oéAA 0%0 additive by additive
single genes and allelic pairs: ozGAD o%l additive by dominance
alblbz, C1d5d6, etc.
two allelic pairs: GZG DD 0%)2 dominance by dominance
a1a3b4b6, CIC2b2b3, etc.
in general og where i refers to number

v of nonallelic genes

acting together with j
allelic pairs

Total genetic variance can then be written as:

2 .. 2.2 .2 .2 2 2
9G =2 =2 % 790 " %1 " %0 " %1 T %0
i+j>0
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GENE EFFECTS IN COMMON BY DESCENT

Since there are two additive genetic effects at each locus, the fraction of additive
gene effects in common for relatives A and B is the additive or numerator relationship,
aap, Which equals twice the probability that a random gene from animal A is identical by
descent to a random gene from relative B at a single locus. The appendix to this chapter
contains a more mathematical explanation for using a, g rather than a, p/2 to describe
additive effects in common by descent.

The fraction of dominance effects in common will be dapg which equals the
probability of genotypes identical by descent or equivalently the fraction of loci with
identical genotypes for relatives A and B.

Similarly, a%B is the fraction of additive by additive genetic effects in common and
apgdap is the fraction of additive by dominance genetic effects identical by descent.

In general, (a AB)i(d AB)J gives the fraction of genetic effects in common by descent

due to i non-allelic genes acting together with j allelic pairs (genotypes).

GENETIC COVARIANCES BETWEEN RELATIVES
Genetic covariance between relatives depends on the fraction of different kinds of
genetic effects which are common by descent. In fact, covariance due to additive gene
effects in common is a ABU%O -- the product of the fraction of additive effects in common
and additive genetic variance. Covariance due to common dominance effects is d ABG%I;
2

that due to additive by additive effects is a/%B"ZO and that due to additive by dominance

effects is a ABd ABU%I' These and others are summarized as follows:
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Contribution to genetic covariance between individuals.

Contribution to covariance

Genetic components between individuals A and B
2 1 2
%10 (@aB) 97
2 2
%1 @aB)' gy
2 2
920 (aABY
2 1 1 2
11 (@aB) (daB)" o7
2 2
T (AR o,
2 1 2 2
912 (2AB) (dAB)” 97
2 i )
Uij (aAB)l(dAB)“ Oij
fori=0,...,n;j=0,...,nwithnloci alsoi + jmustbe > 0andi +j<n

The total genetic covariance is the sum of the parts, that is,

2 2 2 2 2
9GAGB =2aAB9) * 4ABY); * @5B%0 * 2ABYABO]] *

In summation notation the total genetic covariance can be written as

i i 2
UGAGB = '2. = (aAB)l(dAB)J oij
i+j>0

The subscripts of the genetic variance components correspond to the superscripts of
the additive and dominance relationships. When j = 0, (d AB)J = 1 for any d , g and when
dag = 0, (d AB)O = 1 but (d AB)l = 0, etc. These simplifications are illustrated in the
coefficients in the column for contribution to covariance between individuals. An important
point is that as i increases, the coefficients of the higher order genetic components of

. . 2 . _— ,
variance decrease. Thus even if 0,p Is large, the contribution to likeness by that

component, (aAB)i °i20’ will be small if i is very large. For example, with ayg = 1/4
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andi = 3,a ziB = 1/64 is the coefficient for variance due to additive by additive by additive

effects as compared to the coefficient of 1/4 for variance due to additive genetic variance.

EXPECTED VALUES TO SHOW CONTRIBUTION TO GENETIC COVARIANCE
As shown in Chapter 1, the average or expected value of the product of two
variables, x; andy;, is written E(xy;). If E(x;) = 0 is the average of variable X, then
By = oy Similarly, E(x) = o3, E(x))? = k20> where k is a constant and
E(kxxikyyi) = kxkyoxy.
This principle will be applied to the example of genetic covariance between relatives
X and Y for only three kinds of genetic effects but this example will illustrate how the
overall genetic covariance between relatives is determined.
Let Gy = GAX + GDX + Gaay If Y is related to X, then a fraction of
these gene effects also appear in Gy. Then write
Gy = GAY + GDY + GAAY
Gy = aXYGAX + other Gay+ dXYGDx + other GDY + a)z(YGAAX + other GAAY .
The other genetic effects are due to genes from other sources and Mendelian sampling and
are independent of the effects in common with Gy.
Since the genetic effects are defined to be independent with zero means, then

9GxGy =E(GxGy).
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Next, substitute for Gy and Gy, expand, and take expectations of the parts:
9%GxGy = E[(GAX)(aXYGAX)] + E[(GAX)(other GAY)] + E[(GAX)(dXYGDX)] +
EI(G A )(0ther Gp )] * EI(G A )axyGaa)] *+ EIG A )(other Gyl +
E[(GDy)(axyG Ayl + E(GDy)(other Ga )l + E(GD 4 )AXYGDy)] +
E[(Gp )(other Gp. )] + EIGD,)@gyGaay)]l + EGD )(other Gapy)] *
E[(G AAX)(aXYG Ax)] + E[(G AAX)(other G AY)] + E[(G AAX)(dXYGDX)] +
E[(G AAX)(other GDY)] + E[(G AAX)(a )2(YG AAX)] + E[(G AAX)(other G AAY)] .
After factoring constants outside the expected value operator, then according to the rules
for expected values:
%Gy Gy =axyozGA+0+0+0+0+0+0+0+dXYoéD+
0+0+0+0+0+0+0+a)2(YoéAA+0.
The zero terms come from independence of genetic effects and the lack of genetic

effects in common between terms such as (G Ax) and (other G AY).

Example one: The contribution of all genetic components up to second order (i + j = 2)
interaction components to the likeness between records of a parent (X) and its progeny (Y).
. . 1
The relationships are: a = _ andd = 0.
p XY 5 XY

Therefore:

GxGy = (30" o3y + (O oy + 200 o5 +

1 2 1 2
(%07 o + ('O o7 -
Thus:
1, 2 1 2
°GxGy =(3) 9y * (-2-)2 920 -

(Note that (0)0 = (N)? = 1 for any number (N), but that (0)N = 0 for N > 0.)
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Example Two: The genetic covariance between full sibs, X and Y.
1 1
B = — andd = -,

ecause aXY > an XY 7

then
1, 2 1, 2 1 2 1 2 1,,1, 2

GxGy = (5) o7p * () ogy * () a5 * (P 65 + () o7y -
Although full sib pairs and parent-progeny pairs have the same additive relationship the
likeness (genetic covariance) will be greater between full sib pairs than parent-progeny pairs

if dominance effects, dominance by dominance effects, and additive by dominance effects

contribute to genetic variation.

ESTIMATION OF GENETIC VARIANCES

These two examples also indicate how the components of genetic variance may be
estimated. Covariances between pairs of relatives are computed and equated to their
theoretical composition. In general, as many covariances as theoretical components are
necessary. In the above two examples, only two components could be estimated but not
0%0 and 0%0 together since both the parent-progeny and full sib covariances have the same
expectation for those components. Usually 0%0 and a%l would be estimated for this case.
Note that the other components usually must be assumed to be zero.

For example, suppose that Cov(full sib one, full sib two) = 50, and also that

Cov(parent-progeny) = 40. Assume 0%0 = 032 = 031 = 0.

Then,
1, 2 1, 2
50 = (5) 910 * (.Z) 901
1, 2
40 = (5) 910

. 2 2
Thus, estimates are 610 = 80 and So1 = 40.
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In general, for a random mating population, the additive fraction of genetic
variance, 0%0’ is about all that can be used for selection gains. Selection for gene
combinations is ineffective because the contribution to descendants drops by a 4 g with each
generation. The usual goal is to select for additive merit--the part that contributes 030 to

genetic variance and the most to covariances between relatives.

DEFINITION OF HERITABILITY
ST " " . 2,2 2 2 .

Heritability in the "broad sense" is defined as oG/(oG+aE) where oG is the total

geneticvariance, IZ oizj, and oé is the variance due to non-genetic effects (environmental
1

effects).

Heritability in the "narrow sense" is defined as 02 /(02 +02) where 02 is the

k4 10/{°G*°E 10

additive genetic variance and 02G + 0123 is the total or phenotypic variance which is the
total genetic variance plus the environmental variance. This form of heritability, sometimes

called additive heritability, will be used again and again when methods of selection for

additive genetic value are discussed.
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APPENDIX TO CHAPTER SIX

WHY a, p DESCRIBES GENETIC COVARIANCE RATHER THAN a, p/2

1. Additive Genetic Variance, aio

Consider one locus only.

Let @ + o = Ga G, is additive genetic value of animal A due to
effects o; and @ of genes a; and 3
ap +ap = Gp Gp is additive genetic value of animal B due to
effects a;r and o of genes a; and 3 .
Then Cov (GA’GB) = E(aiai. + aiaj. + ajai. + ajaj.)
2y - 2 =
But E(ap) = o for all m and E(aa ) = 0
for all m # m'"
Thus  COV (G),Gp) = az[P(i=i') + P(i=j) + P(j=i) + P(j=j)]
= o2 [4P (random genes of A and B are identical by descent)]
= o [4 (1/2)app)
= o? [2a,g],
2 2
but olg = ElG4] = Elg + aj]z
- Ela] + a;.?'  2aj0)
- 247+ 0 since E(e) = 0
and E(aiaj) = 0 unless inbred.
2
g
Thus _10 o and
2 2
o
10 2 .
therefore COV (G,,Gpr) = — (2 =a . This procedure may be
re (GpGp) > (2app) AB%0 P y

extended to many loci.
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2. Additive by Additive Genetic Variance, a§0
Consider the minimum of two loci and let (aB),, be the additive by additive effect
of the mill gene from the "a" locus and nth gene from the "b" locus. Let the additive values
of animals A and B be
GlO,A =0t o+ B +B, and

G].O,B = aiv + Ctjv + Bkv + Beo .

Then let the corresponding additive by additive effects be
GZO,A = (aB); + (aB)j, + (aB)jk + (aB)jp_ and
GZO,B = (aB)jpr + (a@B)yg + (aB)j.k. + (aB)j'e' .
Then COV,((A,B) = (aB)z[P(i =1")P(k=k")+P(i=1)P(k= ¢")+P(i=j)P(k=k") +P(i=])P(k= ¢')
+ P(i=1)P(2=k")+P(i=1)P(£=2")+P(i=j)P(e =k")+P(i=j)P(2=2¢")
+ P(j=1)P(k=k")+P(j=1)P(k= )+ P(=])P(k=k")+P(j=])P(k= ¢")

+ P(j=1")P(e=k")+P(j=1)P(e=2)+P(=;)P(2 =k")+P(j=])P(2=2¢")]

= (eB)?[P(i=i)+P(i=])+P(=i)+P(=j)]
x[P(k=k")+P(k=2")+P(e=k')+P(2=2¢"]
= (aB)2[4P(gcnes identical)x4P(genes identical)]

= (aB)%[(2aop)(2app)]

2 2
But o3 = El[(Gyya)l = 4f2aB)2 so that o50/4 = (aB)?

%20

Therefore COV,(A,B) = v (43%B) = aZABO%O when all terms are evaluated.



CHAPTER 7

THE SELECTION INDEX

The basic problem in obtaining improvement through breeding is to choose animals
that have the greatest genetic value to be parents of the next generation. The simplified
model for a record, P;, on animal i poses the problem:

P,=pn+ Gi + Ei,
where u is the population mean, a constant, which may represent other fixed factors that
influence P;; G; is the effect on P; due to the animal's complete genotype, and E; is the
effect of the environment on P; and is the effect that masks the evaluation of G;. As was
demonstrated earlier, only additive genetic effects have much chance of being transmitted
over many generations. However, often G; can be safely assumed to be due only to additive
genetic effects.

The problem is to maximize the average of G of the selected group, BGs where kG

is the average G of the total group, i.e.,
MAXIMIZE [AG = g - bl

Genetic improvement per year under normality and other assumptions, as will be derived

later, is:

AG/yr = (I'TIDO'G)/L ’
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where AG is the genetic improvement per generation; ry is the correlation between the
true additive genetic value and I, the index prediction of it; D is a factor related to selection
intensity (value of 0 with no selection and a value of about 3 for selection of the top one-
half percent); o is the genetic standard deviation, and L is the generation interval in years
defined as the average number of years between birth of parents and the birth of
replacement offspring. The four parts of the key equation for genetic improvement will be
discussed separately.

What is a selection index estimate of genetic value? This question is, perhaps, best
answered by an example.

Suppose several animals each have three relatives with records; (X, X5, and X3).
Relatives are known to have genetic effects in common by descent. Thus, the record of
each relative should tell something about the genetic value of the animal being evaluated.
A logical way to put the information together is to weight each record by its relative
importance, i.e., estimate G as I = byX; + byX5 + b3X3, where the b's are the appropriate
weights and the X's are known records of the three relatives. The selection index prediction
of true genetic value is I. The records are adjusted for any fixed factors such as p,

Le, X; = Pi - L.

WHAT SHOULD THE WEIGHTS (b's) BE?
Some desirable properties of the index to predict some true value, T, should be:
1.  To minimize errors of prediction which is the average or expected squared

difference between T and its predictor, I, i.e., MINIMIZE E(T-I)z.
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2. To maximize rj, the correlation between true value and prediction of true
value; this correlation is often called accuracy of prediction of T.

3. To maximize the probability of correctly ranking the animals, and

4. To maximize average true value of the selected group.

The selection index procedure which will be described satisfies properties 1 and 2 and
satisfies properties 3 and 4 if the records of relatives, the X's, and T, the true value, follow
a multivariate normal distribution. These procedures were developed from work by Se\;/all
Wright, Jay Lush, and C. R. Henderson. Henderson proved many of the properties. Most
of the development that follows was taught for many years by C. R. Henderson at Cornell

University, beginning in 1948.

METHOD OF FINDING b's
The general linear index is I = byX{ + byXy + ««« + byXp for predicting some
true value, T, which often is, but is not necessarily, additive genetic value. The goal is to
maximize rpy. Maximizing the logarithm of ry, log (ry), is equivalent to maximizing ry
but is easier to accomplish. Note that:
log (ry) = log (orpp) - (1/2) log (o) - (1/2) log (o7).
The rules for finding variances and covariances of linear functions (see Chapter 1)

will give oy and o% in terms of the unknown b's and known variances and covariances.

Note that o% is a constant and does not contribute to the equations.

o] = blaTxl + bonX2 + e & bNOTXN , and
2 22 22
op = bl Oxl + 2b1b20X1X2 + e 4 2b1bN0X1XN + b2 0X2 +

22
2b2b30‘x2x3 + oo 4+ bNOXN .
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These expressions are then substituted into log (1), and the partial derivatives of log (r7)

with respect to each of the b's are set equal to zero, i.e.,

510 bl“?g +byox.x, *+ *** *bNOX,X
8UTD _ OX4T _ 1 142 14N

= 0
6b1 oI U%
2
5]0g (rTI) ) 0X2T _ b10X1X2 + b20X2 + s e e + bNoXZXN “ o
§by OTI U%
blox + bso +'°°+bN02
slog (rmp) _ OXNT 1XN 2°X2XN XN 0
sbN oy o%

Rearrangement of these equations gives the selection index equations (except for a
constant, k = o%/orn, on the right hand sides of the equations) which define the unknown

selection index weights, the b's:
b 2 + b + b b = k
1°X1 29X1Xo 39X1X3 tooos ot ODNOX XN T ORIX(T

2
b10X2X1 + b20X2 + b3OX2X3 + o o o 4 bNGXZXN = kosz

0 . . .
. L4 . L] .

2
bloxNX1+ bZGXNX2+ b30xNX3 + o0 o 4+ bNOXN = koXNT
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Some important points to notice about these equations are:

1. The constant, k = o%/aTI, will not change the relative sizes of the b's or the
ry S0 k can be set equal to 1, which as will be shown, will result in the same
b's that minimize squared prediction error. In fact, when squared prediction
error is minimized, o% = OTT-

2.  The equations are symmetrical, i.e., the coefficients of the unknown b's are the
same in each column as the corresponding row. See, for example, the
coefficients (the covariances) in row 1 and in column 1.

3. The equations are similar to multiple regression equations except that the true
variances and covariances are assumed known and replace the sums of squares
and products used in multiple regression.

4.  If squared prediction error, E(T—I)Z, is minimized, the same equations are found
except that the constant, o%/ oy is not a multiplier of the right-hand sides of
the equations.

Average squared prediction error is
E[(T-1)?) = 04 + o] - 20qy + 4% + 43 - 2uuy,

The constants p and py will not change differences in the I's. Thus, o%, o%, and oy can
be expressed in terms of linear functions of the b's as for maximization of ry. Usually p
and pj are assumed to equal zero. The partial derivatives of o% + o% - 207 with respect
to by, by *++, by equated to zero provide the following equations which define the b's

which minimize prediction error squared and also maximize r:
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s 2 2 2
€1 o1 " OTI)=O' b02 + boo + e+« + byno = oX,T
5b; . 1 X1 29X1X» N9X1XN X1

2 2
6(0I *op - 2077) _

0: bqo + byo + e + b02 = 0
5bN =V 19X NX1 29XNX2 N XN XNT

These equations are the same as for maximizing rp when a%/a—n is set equal to unity. In

this derivation, o‘% = oy automatically as shown in the appendix to this chapter.

OTHER PROPERTIES OF THE SELECTION INDEX

1.  The correlation between the index and true value is:

2 2
Iy = JZbioxiT/OT = \j(bIC’XlT +boox,T * /oy

The rules for expected values show:

o1y = EbioxiT so that I'TI = GTI/O%‘ .

If an index is not the selection index, the definitional form of the correlation must be used

to obtain accuracy:

22
I = oT1/ o9l

where oy and o% can be calculated using expected values.

If the index is the selection index, the definitional form of the correlation reduces to:

’o-n/o% because o%= o1
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2. Becausel = zbiXi and the Xl are variables, then the index values will also be

variable. In fact, if I is the selection index:

o2 = 2ok
This expression shows that a% corresponds to variation in T that is accounted for by I.

When I is not the selection index:

o% = E(Iz) * r%la% .

3. The variance of prediction errors (average squared difference of T from I) is:
V(T-T) = E[(T-)?] = (1140 .
This expression corresponds to the variation in T not accounted for by L.
When 1 is not the selection index, the variance of prediction errors must be
calculated from expected values:

E[(T-1)?] = E(T?) + E(1?) - 2E(TI) * (1-tp)0% .

4. The average of true values for animals with index value 1 is:
E(T|I=1,) = 1, .

With this property, the selection index procedure is unbiased.

5.  Intuitively, animals with the same index value would be expected to have
different true values. In fact, the variance of true values for animals with the same index
value, IO, is:

V(T|1=1) = (1-1p)o% .
These properties will be used later to make probability statements about the true

value of an animal with a certain index value. If I is not the selection index, T Must be

calculated from E(TT), E(Iz), and o%.
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APPENDIX TO CHAPTER SEVEN
DERIVATION OF SELECTION INDEX WITH MATRIX ALGEBRA

Let x be the information vector:
X =(xg " xN)'.

T may be a true value for a trait, or, e.g., T may be a combination of a vector of

genetic values, g, for several traits weighted by a vector of economic values, v, i.e.:
T=vg

T is to be predicted from a linear function of x; that is, each x; is weighted by some
factor b; so that T =1 = b'x. With no loss of generality, the x; can be assumed to have
zero means, i.e., have been adjusted for fixed effects such as u. The variance-covariance
matrix of x is E(xx') = P.
Then:

o} = E[b'xx'b] = bE[xx]b = bPb' .
With T, the scalar variable to be predicted, o = E[Tb'x] = b'E[Tx] = b'c where
¢ is the vector of covariances between the X; and T, e.g.:
(OX T OX,T *** OXNT) -

Squared prediction error is:

a% + a% - 20-[—[ = o% + b'Pb - 2b'c.
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To minimize squared prediction error, partial derivatives are taken with respect to b and

equated to zero with rules for derivatives of matrices and vectors (Searle, 1982):

5(o% + b"Pb - 2b°C)
= 0, where by parts;

sb
2
§(op) 2.
=5 = 0, because o is a constant;
M =2 Pb and
§b
§(b°c) - ¢
5b )

Thus

2Pb-2c =0and Pb = ¢
so that

b="pPle.
For an animal with information vector, x, the index is:
I =0bx.

With the identity, b = P1c |

a% can be rewritten as :

o} = bPb = ¢PIPPle = ¢Ple = be.

The last expression in the series of equalities is the easiest to calculate.

Similarly, oy = b'c  so that the correlation between I and T is:

tp = orp/(030BS = be/[be) o - ‘b'c/a?r.
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If derivation of the selection index equations is from maximizing ry = o7/ (o%o%)‘s,

the logarithm of 1y is easier to work with. By remembering that

then the parts of

sllog(x)] _ [ 1

] §(x)
5(y) X

()’

2 2
§[log(oy) - .5 log(ay) - .5 log(om)]
sb

can be differentiated separately as follows:

§(b’c)
&b

c(1/op)

5.5 log(b’Pb)]
5b

Pb(1/ af) and

1.5 log(om)]
5b

Thus

¢(1/op) - Pb(1/0%) = 0 and Pb = ¢(o}/ory) -

If the constant, o%/a-n, is set equal to 1, the equations are the same as for minimizing

prediction error squared. A constant other than one could be chosen but would not change

ranking by the index and would not change the r1. The calculations for o% and o would,

however, be different.



CHAPTER 8

DETERMINING THE COEFFICIENTS FOR
SELECTION INDEX EQUATIONS

In matrix form, the selection index procedure is quite simple; an inversion and a
matrix by vector multiply to solve for the weights, one vector by vector multiply for the index
and another vector by vector multiply if accuracy or prediction error variance is wanted.
These steps were shown in the appendix of Chapter 7. With or without matrix algebra,
however, the difficult part of selection index procedures is to determine the numbers
(coefficients in selection index jargon) that go into the left-hand sides (LHS) and right-hand
sides (RHS) of the equations that must be solved to find the weights (b's) for the records
(X's). This chapter will utilize expected values to determine these coefficients from a few
genetic parameters, such as heritability (h2), repeatability (r), numbers of records for the
different relatives, and the numerator relationships.

The X; used in the selection index are often averages of records. The variance of
an average depends partly on the covariance between records making up the average. Such
covariances will be between records on the same animal or between records on relatives
such as paternal half-sibs. An important step in finding the variance is to determine the

covariance between records in the average.

87
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MODELS FOR DETERMINING COVARIANCES BETWEEN RECORDS
Traits that can be measured only once can be represented by the model:
Pl = Gl + El
where P; is the phenotypic record adjusted for fixed effects such as the overall mean,
G; is the total genetic value, and
E, is the total of all environmental effects.
The covariance between records on relatives i and j can be determined by expected
values:
Cov(P; ’Pj) = E[(G; + Ei)(Gj + E_])] = oGiGj + oEiEj ,
under the usual assumption of no covariance between genetic and environmental effects.
2 2 .
Note that oGiGj = ajj019 * djjogy * -+ as developed in Chapter 6.
For convenience of notation, the covariance between environmental effects on
records of relatives i and j will be defined as:
g =C '02
EiEj =439
2 2

where 0§ = op is the total or phenotypic variance. Thus, if only additive genetic effects

are involved:

2 22
i = 8ji0 = aijh oy -

oGiG
Then
2
Cov(Pi,Pj) = (aijh2 + Cij)oX .

Even if other genetic effects are involved, this expression is often a good approximation for

the phenotypic covariance.
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Multiple measurement traits are those that allow repeated records, as for example

a first milk lactation, a second milk lactation, etc. The model for such records is:

where Pij is the jth phenotypic record of the ith animal adjusted for the mean and
other fixed effects,

G; is the total genetic value,

PE; is the total of all permanent environmental effects which affect each record

the animal makes, and

TEij is the total of all random temporary environmental effects which affect

only the jth record of animal i.

This model may be an over-simplification of the true model for some multiple
measurement traits but is often a reasonable approximation.

Because Gi and PEi repeat in every record of the animal, this is sometimes
called the repeated records or repeatability model and sometimes the animal model. The
sum of all permanent effects of the animal can be denoted as the animal effect:

A; = G; + PE;.
Repeatability, r, is defined as the fraction of the total variance which is due to animal

effects:

r = 0%/0)2( = (c:(%l + OIZ)E)/(O‘% + 0}2’E + o%E) .

Note that o% = ra)zi, an identity that is often useful.
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The covariance between two records on the same animal is o% = ro)z( and can be
determined with expected values:
Cov(P;iPy) = El(A; + TEj)(A; + TE)] = 03 = ro%
under the assumption of zero covariances between animal effects and temporary
environmental effects and between temporary environmental effects. Now the variance of

an average which is the most important coefficient of the LHS's can be developed.

THE VARIANCE OF AN AVERAGE

Let X; be the average of n; records:

Xip * =r+ *+ Xip,

X; = —
1

If E(X%j) = o)2< for all i and j (that is, all records are from a distribution having the
same variance) and if E(Xijxij’) = oy for all j # j; that is, all pairs of records with a

common 1 subscript have the same covariance, then:

2

2

5 Xip * o+ Xip,
o, =EX) =

nj

2
njoy + nj (ni-Nox'x
2

n;

2
oy + (nj-lox'x

I
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In the following paragraphs when X; is the average of records on the same animal,

oxrx Is the covariance between records on the same animal so that
2
UX‘X = rUX.

When X; is the average of single records on a group of equally related relatives (with
additive and dominance relationships, a;; and d;;\), then oy is the covariance between
records of any pair of relatives 1 and i', each contributing a record to the average so that

— .. 2
oX'X = oGiGi' * G0y
the sum of the total genetic covariance and the environmental covariance.
2 o . . .
If 9G;G; = aii'hzox (only additive genetic effects contribute to the genetic

covariance), then:

2
oxX'x = (aii'h2 * Cjjoy

COVARIANCE BETWEEN AVERAGES
The covariance between averages is often equal to the covariance between any record
in the first average and any record in the other average. Expected values can be used to

determine when this is true. Let X;, be a record from average

Xjp + 0+ Xip,

i ’

and X] ¢ be arecord from average
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If E(Xika ¢) is the same for all k and ¢, then the expected value shows that in the

numerator of

Xit *+ =0+ Xing [| Xj1 + *** * Xjn,

Cov(X;,X)) = E j

ni nj
there are njny expected values with the same expectation, E(Xika ¢), and that the

denominator is nn . Thus, if a representative record from X; is G; + E; and a

representative record from X] is Gj + E;, then

Cov(X;, X;) E[(Gj + E{) (Gj + Ej)]

2
= oGiGj * Gjox -

SUMMARY OF VARIANCE OF AN AVERAGE

1) If Xl is the average of records on animal i, then oxrx = ro>2(,

2) If X1 is the average of single records of relatives of type i,

2

then ox'x = 9GGy * Sii'9X> and

3) I X is the average of n; records on each of p; relatives of type i,
then also ox'x = oG + c-'-o2 .

Gy i1'9x

The derivation of the variance of an average of averages can be done with expected

values using the often correct property that the covariance between averages is the same as

the covariance between a record from one average and a record from the other average.

Let X; = Xipr oo Xipi where
Pi

xij is the average of n; records on each animal j in relative group i. The number of animals

in group i is p;.
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Then _ _
? Xi1 *+ *** * Xip. Xip)? v eee ()‘(ipi)z + all products
°xi T F Pi ) 2
P
_ PiV&Xj) + pii-DCov(X;j, Xjj)
2
Pj

2 2
ox * (ni—l)rax

nj

2
+ (pi-l)(oGlGi- + c]i'OX)

Pi

4) This formula allows calculation of the variance of the average of any number
of animals, each with any number of records using just a few parameters, i.e., variances do
not need to be estimated for all combinations of number of animals and number of records

from sets of data if the assumptions are correct for the previous derivation.

THE RIGHT HAND SIDES
The selection index weights (b's) depend primarily on the variances of the averages
and RHS's of the equations to find the selection index weights. If oii, °Xin' and
OX;T are known for all i and j, the equations to find the appropriate weights for the
index can be set up easily; aii and "Xin can be estimated or derived as shown and do
not depend on what is being predicted. The RHS's, OXT however, are the covariances
between what can be measured, the X;, and T, something that cannot be measured or seen.
Therefore, ox,T must be computed indirectly. If selection is for additive genetic value,

OX.T = aiao%o where a,  is the additive relationship between the relative with record
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X; and the additive genetic value, G Ay of the individual a that is to be evaluated.
The additive genetic variance is G%O' The RHS is the portion of the genetic
covariance between relatives i and a that is due to additive genetic effects in common.
Recall that 0%0/ o>2( = h2, heritability in the ‘'narrow sense". Thus,
G%O = hzog( and OX;T = ajh Zoi.

Although the usual case is to select for additive genetic value the selection index is
more general and can be used for most possible definitions of T, the true value to be
predicted. The only part of the selection index equations to find the weights that changes
when T is redefined are the right-hand sides, the IX,T- Of course, o% changes and other
parameters that depend on o% and the RHS's will also change. Expected values and simple
models can be used to find OX,T and o%. The expected values will be demonstrated for
several definitions of T, including the usual one where T is additive genetic value. To
simplify the expected values, all variables will be assumed to have zero means, although, as
stated earlier, variances and covariances are not affected by the means.

Case 1. T=G Ay additive genetic value for animal a.
Let X; be a representative record included in X; with model
X; = G; + E;or X; = G; + PE; + TE;, where G; can also be separated
into additive, dominance, additive by additive genetic values, etc; PE; is
the permanent environmental effect on all records of animal i; and TE;

is a temporary environmental effect on a specific record of i.

Then, oxiT = E(XiGAa) = E[(G; + Ei)(GAa)]

+

E(GiGa,) + E(E{Ga)
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unless a nonzero genetic by environmental covariance exists. Thus, the
right-hand sides of the selection index equations will be
a. 02, = a;_h20%, where o is the phenotypic variance of
ia%10 = 3o X X phenotyp
individual records. If X; is a record on animal a (i=c), then
iy = 1+ Fa.

Similarly, 0% = E(GA ) = aq05g = (1+Fo)h 20y ifaisinbred and
«a

a% = 0%0 = hza)z( if a is not inbred.

Case 2. T =A, =G, + PE_, real producing ability of animal a.
If i=aq, OX:T = E[(G, + PE, + TE,)(Gy + PE,)]

= oé + O%E = °2A = ro%i', if not inbred.

It i#a ox.T=EGj+PEj+TE)Gq + PE,)]

E(GiG, + E(PE;PE,)

E(G;G,) + E(PE,PE,) + others likely to be zero
= oGiGa + OPEiPEa which is the

total genetic covariance plus permanent environmental covariance that

sometimes is assumed to be zero but is not necessarily so, e.g., for

littermates. For alli # a, and °2G = U%O’ the RHS's will be the same

as for predicting additive genetic value and if a has no records, the index

weights and index will be the same as for predicting additive genetic

value. However, o% will be different;

2 2 2 2 2 .
o% = E(A,)) = E[(G4 + PEa)z] =0, =0g * Opg = Ioy if not

inbred. Recall that repeatability or the correlation between records on
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the same animal is defined as :

r= (aé + G%E)/O‘% = a%/a)zc.

Case 3. T = GDa’ dominance genetic value.

2
ox,T = El(G; +ENGp, )] = digog;

Case 4. T =G Ay * GDa’ additive plus dominance genetic value.

2 2
ox,T = E[(Gj + E)(Gp, + Gp )l = 2ig97g * dia% >

2 2 2 . .
o = E[(GAa + GDa)Z] = 990 * 91 ° if not inbred.

Case 5. T = G, overall genetic value.
2 2
OXiT = E[(Gi + Ei)(GQ)] = aGiGa = aiaolo + dia0’01 + oo

o% = E(Gf) = oé = 0%0 + ogl + «++  if not inbred.

If Gy,=G Ay’ then case 5 is the same as predicting additive genetic
value as in case 1.

Case 6. T = (1/2)GAa, the average part of additive genetic value that is
transmitted to progeny--transmitting ability. Transmitting ability is usually
reported by most national dairy and beef sire and cow evaluations under
such names as expected progeny difference (EPD), predicted difference

(PD), and predicted transmitting ability (PTA or ETA).
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ox;T = El(Gi + E)(1/2)(Ga )] = (1/2E((G; + E{ )(Gp )]

= (1/2)aiao§0
Thus, because all RHS's are one-half those for predicting additive genetic
value, the index weights and index will only be one-half as large as when

predicting additive genetic value. The variance of T is:

o - E[(I/Z)Z(G,ia)] - (1/HEG2 ) = (1/4)2g49%,
a

= (1/4)07, for Fy = 0.
Thus, the ry will be the same as for predicting additive genetic value.
These first six definitions show the flexibility of the selection index if T

can be defined. In the following cases, there is more difficulty in

determining exactly what T is.

T =P, =G, +Ey =G, + PE, + TE,, a future record (this is
probably what most breeders think is happening in cases, 1, 2, and 5).
If i = a (animal already has a record, e.g., record P,; and want

to predict from this record, record P5),

E[(Gq * PEy + TEy1)(Gy + PE, + TE )]
2,2 _ 2

=9G * %€ T 9%
if not inbred.

oxX iT

Ifi»a
OX:T = E[(G; + PE; + TE{)(G, + PE, + TE,)]
= E(G;G,) + E(PE,PE,) + E(TE,TE,)
= Cov(G{G,) + Cov(EE,).
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The two environmental covariances sometimes can be assumed to be zero.
The first term is the total genetic covariance and not just the covariance
due to additive genetic effects. These right-hand sides and index weights
are the same as for predicting real producing ability if E(TE;TE ) = 0.
However, o% is different;

a%q = E(G, + PE, + TEm)2 = aé + G%E + o.-er = oé + 012_3 = ag(,

the total or phenotypic variance of single records.

Case 8. T

average of records of m future half-sib progeny of some sire
[(£G ;)/m] + [(ZE,)/m]

Because the covariance between averages and between individual

records is the same in this case, let
P, = G, + E_ be a representative record in T; then
ox;T = E[(Gj + E{)(Gg + Eg)]l = 0G G,
2 .

However, 2 (
2 =(G; + E; oy * m-1)oxx
o = E{[— Dy - — ,

where oy is the covariance between pairs of records in the average T.

This term can be evaluated as before and will have one or more genetic
components and possibly an environmental covariance,
0G.Gn * OE.E:
GiGy E{E;
in which the genetic plus environmental covariance between i and i' are

both included.
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Case 10.
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T = average of records of an infinite number, « , of future half-sib
progeny of some sire.

OX.T is as in (case 8), but

2 2

or = (ox/m) + [(m-1) ox'x/m] and as m - o, o-% - oy
where

O'Xox = oGiGi' + O'EiEi,.
When m = oo, this case is the same as predicting (1/2)(G Aa) of a sire
if Gy, =G Ay

T = average additive genetic value of m or « future half-sib progeny,

(=Gp aj )/m.

OX.T = 3iaC1p 2 in (case 8), and
2 2 2
o = E{[(2G )/mI’} = [07) + (m-D)agqayg)/m

because 0%0 is the variance of additive genetic values and aaa"’%o is
the covariance between additive genetic values of a and o, a
representative pair in the group. As m - o, o% - aaa"’%()' For
noninbred half-sib progeny, a,,» = 1/4 and o% = (1 /4)0%0 as in case 6
when predicting (1/2)(Gp ). In case 10, a refers to a progeny

sire
group, and in case 6, a designates a particular sire that has the progeny.

These examples illustrate the power of the selection index method; T can be almost

anything, even, for example, difference in additive genetic value between animals or linear

functions of genetic values. The absolute necessity of clearly defining what T is should be

clear. Precise definition of T would avoid much confusion.
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AVERAGE OF RECORDS OF A SINGLE RELATIVE

If X, is the average of n; records on an animal, then the variance of the average can
be found as a function of variances and covariances of the records going into the average.
If, as often is nearly true, the variance of first records equals the variance of second records,
etc., and the covariances are all equal, then

1+ (ni—l)r]

nj

2 2
9%X; T %X

where 052( is the variance associated with single records and r is repeatability. Thus, the

diagonal coefficient of the selection index equations to find the selection index weights is:

1+ (ni-l)r]

nj

2
¢

Each off-diagonal coefficient is the same as the covariance between a single record of one
animal and a single record of another relative.

If, however, the only reason for likeness between relatives is common additive genetic
h2
Jh ox-
If other components of genetic variance are important, this expression is not the true

effects, then the off-diagonal coefficients are of the form "Xin = aij"%o = aj

covariance but may be a reasonable approximation because the coefficients of the other
components will be small. A more likely source of error is the possibility of an
environmental covariance among relatives. If c; jc’g( is the covariance between records
of relatives i and j caused by common environmental effects, then the off-diagonal
- _ 2 2 ) . \
coefficients should be axixj = (aj jh * Cij )ox - The equations to find the b's can be

written (assuming all c;;: = 0) to predict Gy :
] Ag
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1+(ny-Dr) 2 22 22 22
—_—  |oyb + aioh by + e + h b = ai1,h“o
[ n ox01 121 0x02 aIND OxDN 1ol 9
22 1+(np-1)r| 2 22 22
h b — — —loyby + e + h b = an,h“o
a12h oxbq [ n ox02 NN oyxON 2a1 Ox
22 22 1+(nN-1r) 2 22
aiNh b + h“oyb + oo |- b = anuyh
IND0xDq NI 0xDb [ N Ox°N Nefl ox

Because o>2< appears in each equation, dividing each equation by 0)2( will not change the

solutions for the b's.

Thus, the equations can be written as:

1+(n1-Dr
_(L_)bl + aph?by + oo + aNh%by = ajgh?
n
1+(nHr-Dr
a12h2b1 + —(-nzz—)bz + eee + aZthbN = a2ah2
1+(nn-1Dr
althbl + azthbz + oo + _(_§_le = aNahz
nN

Only r and h? are necessary in order to set up the equations because the

relationships can be computed and the n's will be known. These equations are sometimes

called the simplified equations . Another simplification is to divide by hzo)z(.



102 Selection Index

AVERAGE OF n RECORDS ON p EQUALLY RELATED RELATIVES
Let X, be the average of a genetic group of animals (p;) each with n; records (e.g.,
a group of paternal half-sisters each with 2 records). Further, 1) each animal in the group

has the same relationship, a.:

;i»» to all other animals in the group, and 2) each animal in

group i has the same relationship to all animals in group j, i.e., ajj is same for all pairs of

animals; one from group i and one from group j. Then the diagonal coefficients become:

1+(n;-1)r

2 nj
X,

+ (p; - Dajph?

Oy -
Pi X

If other than additive genetic variance contributes to likeness between animals in the

genetic group, the part of the numerator corresponding to the covariance within group will
. . . . 2 .

be greater. For example, if the environmental covariance is Cij'ox and there is also

likeness due to dominance genetic variance, the diagonal coefficients are:

1+(n;-Dr 2 .2
——— + @i DG h? + dijog, /oy + Gip)
1

02 = o
X D; X
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After dividing by o% and with the assumptions to be again stated, the simplified

equations for finding the appropriate weights for the index

N
Gy =1= XbX; are:
* i=1

dib;  + apph?by + +o + aphZby = ag b
2 2 = a2
alzh b] + d2b2+ e + aZNh bN = azah

. .
. .

2 2 _ 2
alNh b1+ aZNh b2+ ese 4 dNbN = aNah
1+(nj-1)r

2
+ (p; - Dajph
nl (pl ) 11

where di =
Pi

The assumptions that are implied by this simplified set of equations are:

1)  selection is for additive genetic value,

2)  the variances of single records for all relatives are o

3) the covariance between records on an animal is ro

X ’
for all relatives.

4) only additive genetic variance contributes to the covariance among

relatives. If this assumption is not true, the aijh2 terms should be

modified to take into account other components of genetic variance and

any environmental covariance, and

5)  each animal in group i has the same number of records. If not, the group

should be divided so that each animal in a sub-group has the same

number of records.
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RECORDS FROM INBRED ANIMALS

The variation among inbred animals will be greater than for non-inbred animals since
the genetic variance of inbred animals is aii‘%o = ( 1+Fi)o%0 when only additive genetic
effects are considered. Thus, the phenotypic variance among single records of inbred
animals is (1+4Fas, + o = [(15F)h? + (1-h9)Jox, where o is the variance of
single records of non-inbred animals. The diagonal coefficients of the equations that
determine the selection index weights will be increased. For single records, the increase will
be Fih 20§( to (1+F;h 2)crg(. For the average of records on the same animal, the

diagonal coefficient will be:

2

[1+(ni-1)r 2
—— +Fh*%|o
X

0

: : . . 2
because the covariance between records on the animal will also increase by Fih zox.

For the average of single records on each of p; animals in group i, the diagonal coefficient

will be:

(1+F;h 2y . (Pi-l)aii'h2 2
Pi

Although that situation seems rather unlikely, in most such cases, a;; will be larger than
if the animals were not inbred. For the average of n; records on each of p; animals in

group i, the diagonal coefficient becomes:

[ 1+(nj-1)r

" Fihz] + (pi-D)ajj+h?
1

Oy -
Pi X

If animal a is inbred, the formula for the denominator of rqy will be o% = (1+Fa)h20)2(

when selecting for G A,
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COMPUTATION OF ACCURACY WITH SIMPLIFIED EQUATIONS
The solutions for the b's will be the same for the simplified equations as for the

regular equations if the assumptions are true. For the regular equations

2 2
I = ZbiUXiT/"T-

22 2
oy = ajq07( for oX;T

and remember that o% = 0%0 if T is additive genetic value.

Then

For the simplified equations, substitute a;,h

2 2,2
IT1 = £bjaja070/970 = Thidje and rqy = yEbjaj,

Thus, only r and h? are needed to compute the b's and rpy with the simplified

equations when selecting for additive genetic value.

VARIANCE OF T GIVEN THE INDEX WITH SIMPLIFIED EQUATIONS

0%0 = 0-21- will be needed since

OT|I=IO = (1_r'I'[)°T = (1_2biaicz)°']" = (1-zbjajy)h ox -

ADDITIONAL NOTE

Often all animals will not have records available on the same types of relatives. Even
when records are available on the same relatives, the relatives may not have the same
number of records. The selection index procedure can still be used to compare animals, but
then the weights for the index for each animal with a different set of records and types of
relatives will have to be found from the set of equations corresponding to the p;'s and n;'s

associated with records of relatives of that animal.
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APPLICATION OF THE INDEX TO CASES WHERE THE ASSUMPTIONS ARE TRUE
1.  One or several records on the individual being evaluated.
Often individuals must be compared on the basis of their performance but with
unequal numbers of records. The best procedure is to solve the index equations for each

specific case (i.e., number of records per individual). If, however, all the variances = 0)2(,

all the covariances among the X's = ro)2<, and the covariances on the RHS's all are equal,
then the equations can be simplified.

If the covariances between all records and the additive genetic value of the individual
are all equal, as is a common assumption, the index becomes

I =bX

where X is the average of n records on the individual to be indexed for additive genetic

value.
The equation to find b for equal variances and covariances is:
1+ (n-Dr 2 nh 2
— —~ 7| b=h® sothatb= ———— __.
n 1+(n-1)r
Iy = _____nh2 [h 242 /h 202] = nh because 02 = 02 = h 20>
1 1+(n-1)r X X 1+(n-1)r T 10 X
Then
2 nh? | 22 . .
GTI I=[. = 1-—__1h ox for animals with the same number of records and the
~lo 1+(n-1)r

same index value, I,

This procedure allows animals with varying numbers of records to be ranked
according to estimated breeding value so that the probability of correctly ranking the

animals is maximized.
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2. The case of using one record on each of many relatives to estimate the breeding

value of animal a.

The index equations will be:

2 2 _ 2
bl + a12h b2 + o + alNh bN = alah

2 2 _ 2
a12h bl + b2 + e + aZNh bN = azah

2 2 _ 2
alNh b1+32Nh b2+ coe + bN—aNah .

Only additive relationships and heritability are needed to set up the equations to

solve for the selection index weights.

3. The case where related individual i has more than one record (m;).

Now the diagonal coefficient will be:

1+(nj-1)r

nj

The off-diagonals and RHS's will be the same as case 2.

4. The case where the X are the averages of single records of p; members of group
i with relationship a;; with each other and all having the same relationship to a and to other
groups or individuals used in the index.

Now the diagonal coefficients will be:

1+(p;-1)ajjh %
Pi '

The off-diagonals and RHS's will be the same as in cases 2 and 3.
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5. The case where p; members of group i have more than one record (n;).

The diagonal coefficients will be:

1+(n;-1)r
— T+ (p-Dayh?
nj

Pi
The off-diagonal coefficients and RHS's are the same as before. This case provides the
general form of the diagonal coefficients because when n; = 1, the diagonal is the same as
for case 4; whenp; = 1, the diagonal is the same as for case 3 and when n; = 1 and

p; = 1, the diagonal coefficient is the same as case 2.

6. If members of a group of related individuals have differing numbers of records,
then each subgroup with different numbers of records per individual can be treated as a

separate group.

APPROXIMATION TO THE SELECTION INDEX WHEN h? IS SMALL
If heritability is small, a further approximation can be made to the selection index
equations. The simplified equations have aijh2 as the off-diagonal coefficients. The aij's are
less than or equal to 1/2 except for unusual situations. If h2 = .05, then all the off-diagonal
coefficients are less than or equal to (1/2) (.05) = (1/40). The approximation is to set these
small off-diagonal coefficients to zero. The equations then become:
dyby = a1’
dab; = apoh”

_ 2
dNDN = angh

where dy, d,, ¢+ +, d are the diagonal coefficients after dividing by 0)2( .
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With this approximation, the weights are proportional to the relationships when each
relative has only one record. This procedure also provides an approximate computational
check for cases where the off-diagonals are really greater than zero. The ry appears larger
than it really is if the r%l is computed as £b;a;, since the b's will be larger than they should
be.

. 22, _ 2 _w2

The true rpy will be U’H/(OI op)5 where o1 = E(TI) and o1 =E(I).

SELECTION INDEX NOT EXPRESSED IN DEVIATIONS

So far the index has been expressed in deviations where I as well as the X's are
deviations from their population averages.

This is equivalent to

Ideviation = (I = Ko) = b1(X1-#p) + ba(X3-p2) + +++ + DNXN-HN)-
If the index is desired as an actual value, then if the u's are known,

I =py +by(Xg-pq) + +++ + bN(XN-#N)

where I is not expressed as a deviation; u, is the average of the population where the
animals being indexed will make records; and Bis for i=1, +++, N, are the population
averages associated with the records of the various relatives used in the index.

Example: Suppose a dairy cow makes a record of 14000 in a herd that averages
12000. A progeny record in that herd is to be predicted.

Then if h% = 25

b = (1/2)h? = .125

= 12000 + .125(14000 - 12000) = 12,250 .

Iprogeny

Suppose instead that the herd average will increase to 13000 before the progeny

makes a record. Then

Iprogeny = 13000 + .125(14000 - 12000) = 13,250
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TABLE 8.1. WEIGHTS AND ACCURACY VALUES FOR PREDICTING

DITIVE

GENETIC VALUE FROM RECORDS OF VARIOUS RELATIVES. (h“ IS

HERITABILITY; r IS REPEATABILITY).

Records

Individual

Dam or sire
or progeny

Sire and dam

One grandparent
Four grandparents

One great-grand-
parent

Eight great-
grandparents

Individual and one
parent or progeny

Individual and
both parents

Individual and one
grandparent or
grandprogeny

Individual and four
grandparents

Parent and progeny

Progeny (p half-sibs)

(1)
(n)
(1)

()
(n)

Selection
Index Weights

n2

nh2/[1 + (n-1)r]
h2/2

nh?/[1 + (n-1)r)(2)
h2/2; h2/2
Snh2/[1 + (n-1)r];
SnhZ/[1 + (n-1)r]
h2/4

All h2/4

h2/8

All h2/8
[h2-(h%/2)2)/(1 - (h%/2)?);
[h2(1-h%)/2)/11 - (h%/2)?]

hz(h2 2)/(h*-2);
n%(h%-1)/(h*-2) « + -

g 16)/(h4 -16);
h%(h2-1)/(h*-16)

h2(h2-4)/(h4-4)
hZ(h2-1)/(h*-4) + « «

202 /(4 +h%); 2h%/(4+h?)
2ph?/[4 + (p-1)h?]

Accuracy = rqy

/2
ynh?/[1 + (n-1)r]

sofn2

50ynh2/[1 + (n-1)r]

71ynZ

Inh 2/[1 + (n-1)r]

25/n2
sofn2

1252
35/h2

J5h2-2n% /40t

yh2(2n2-3)/(h%-2)

yh2@2n2-17)/(h*-16)

yh2(2n2-5)/(h%-4)

y2h2/(4+n?)

YphZ/[4 + (p-1)h?]
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TABLE 8.1 continued:
Let A = [1 + (n-r]/n, D = {1 + [(p-1)h2/4]}/p, and C = AD - (h*/16).

Records Weights Accuracy
Individual (n) and [h2D - (h2/4)2)/C; Jo1 + (02/4)
paternal half-sibs (p) hZ(A-h%)/4C

Individual (n) and his [h2D - (h%/2)2)/[C - 3h%/16)); by + (02/2)

paternal half-sib Sh2(A-h2)/[C - (3h%/16)]

progeny (p)

Dam (n) and Snh2/[1 + (n-1)r]; /b1/2 + (b1/4)
paternal half-sibs (p) ph2/ 4 + (p-l)hz]

Dam (1) (b2 - (h*/16))/12 - (h*/64));

sire (1), and [h2 - (h*/16)}/12 - (h%/64)]; Jio1 + by + b3)/2
progeny (1) [h? - (b*/8))/12 - (h*/64)]

Paternal half-sibs (m), mh2/[4 + (m-l)hz];

dam (n), and dam's h2[D - (h2/16)]/(2C) /b1/4 +by/2 + b3/8

paternal half-sibs (p) h2(A-h2)/(8C)




CHAPTER 9

SIRE EVALUATION, EXAMPLE OF APPLICATION OF
SELECTION INDEX

Many traits cannot be measured on males, thus genetic evaluation must be based
either on records of female ancestors or on records of female progeny. Evaluation on the
basis of progeny also usually results in much greater accuracy (ry) than pedigree
evaluation, even with traits measured on both sexes. This method has received much use

in dairy cattle and poultry breeding and also with other classes of animals. \

ESTIMATION OF BREEDING VALUE
The problem of prediction of breeding value from progeny records in the simplest
form is that the average of single records adjusted for fixed factors of p progeny all from
different dams, Xy is known and the additive genetic value of sire, e, is to be predicted as:
I =bX;.
If the assumptions discussed earlier are true, the simplified equation to find the best

weighting factor, by, is:

[1 + (p-1) f=111'h2
P

bl = alahz.

113
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In the diagram

PR
P
s

X, and X are a representative pair of records in the progeny average and « represents the
animal to be evaluated.
In this situation, ajp = .25 and a1y = .5, so that:

2
b= 5PN 20 . 2B oy - ey

1+(p-1)(:25 h ) - 4-h% P*
2

Asp ——> ©, b ——> 2.0,

Forh? = 25, by = 2P; forb? = 5, b= 2B e

- In general, rqq a14b1 Note that

(P+l)

as the number of progeny, p ——> ®, rp —> L.00.

Note: 1) a new equation is not needed for c;,ach sire with a different number of
progeny, because by has been solved for in terms of p and h2,
2) by depends on p,
3) 1y depends on p, and
4) by can exceed one. For most genetic evaluations, the b's are usually less

than one except for sire evaluation from progeny records.
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VARIATIONS ON SIRE EVALUATION

The preceding section describes the basis for predicting additive genetic value of a
sire from his progeny. Similar procedures that have been used will yield a weighting factor
which is one-half this bl; for example, P rather than Zp .

p+15 p+15
The following two additional definitions of true value result in the smaller weight.

Definition II. Rather than estimating the breeding value of the sire, the breeding value

of a future progeny, a, is to be estimated.

ae”
PR
PR

ajq = .25 as before, but a1, = .25 rather than .5. Again, 4 = (4- hz)/h2

Now, bl = p and, in this case, as p ———> 0, bl — 1.0.
p+
For h% = 25, by = P = forh?® =5, b= P e
p+7
Also 1 = 25 p+ ! ¥oy

and, in this case, as p ——> Ip ———> 5.
Note that this accuracy is for predicting the additive genetic value of an animal from records

of p paternal half sibs.
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Definition III. The daughter or progeny superiority of a sire (also called transmitting
ability) is to be predicted. Progeny superiority is defined to be the average
of an infinite number of future progeny which is equivalent to one-half the
additive genetic value of the sire, i.e., T = .5 GSIRE .

The equation to find by is:

1 + (p-1) 25 h?
P

by = (5)(S)h?) andb; = —P_ asin definition IL.
p+A

The accuracy, TP however, will not be the same as in definition IT but will be the same as

for predicting the breeding value of the sire.

b1o
Remember Iy = 17X .

- P 2
Note that biox T = [m] (5) (5) %y
T
ButT = .5 GSire' Thus, because G is additive value:

0% = E(T?) = E[(G/2)?] = (25)E[ G?] = (25)07, -

[p/(P+1)1(25 7)) I ;
I'TI = : = "
2507, prh

which is the same rqy as when estimating the additive genetic value of the sire. This result

Thus,

should be expected because the only change has been to divide what is to be predicted by
a constant one-half. The only difference in the evaluations is a factor of one-half. Ranking
will be the same. The important point is to define T exactly, since what T is, makes a

difference in the weighting factor and may make a difference in ry .



Sire Evaluation 117

ENVIRONMENTAL COVARIANCE IN SIRE EVALUATION

If progeny are treated more alike because they are related than are unrelated
animals, then an environmental covariance in addition to a genetic covariance will exist
among animals in a progeny group. Assume that the environmental correlation among half-
sibs in the same environment is Cll"’)z( .

The equation to find by to evaluate the sire from p progeny with one record each is:

1+ (p-1)(agh? + c1q) )

2
> 1 = a1gh” ,

where aq. is the relationship among animals in the group, (aqy = .25, if half sibs),
cll.a% is the environmental covariance, and

a1, 1s relationship of animals in the group to a. If a is the sire, then a;, = .5.

2 2
Thus, by = .5 ph and Iy = 25 ph .
1+ (p-1)(25h2 + ¢17) 1+ (p-1)(25h2 + ¢17)

Ifeqpr =25 h% and h% = 25 as is approximately true for lactation yield:

b = pq or 2p rather than Zp with no environmental correlation,
p+7 p+14 p+15
Sp p
and 1y = =71 .
T p+7 p+7

In this case as p ——> o, bl —> Lbutrpp —> 7L
The important point is if ¢y * 0, thenas p ———> o, g ———> less than 1,

depending on the ratio, ¢qq /all'hz.
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The following table compares the b;'s and ry's when h% = 25 with and without

environmental correlation.

No environmental correlation Environmental correlation
¢ipr =0 ¢qpr = 0625
Number of
rogen
’ pg ’ by = piIiS I = ' p«IL)IS by = pI«)~7 rrp = .71 pIi7
1 125 25 125 25
3 33 41 30 39
10 .80 .62 S9 54
20 1.15 76 74 .61
50 1.54 .88 .88 .66
100 1.73 93 93 .69
1000 1.98 99 .99 70
© 2.00 1.00 1.00 1

The previous table assumes the environmental correlation is the same for all pairs
of progeny. The USDA dairy sire evaluation procedures in the past and now with mixed
model methods, however, assume only records of daughters of a sire in the same herd have

an environmental correlation. If there are I daughters in the 11-11 herd, then:

2
by = 2 ph . b2 = 25and ;g = 0625,
2 4Zn (nj-1) cqpr
4 +(p-1) h* +
by = 2p as compared to by = 2p with ¢y4. = 0.
znj (nj-1) p+15
p+15 + —— —
1%

As before, r1 = /.5 b1 ; and for h? = 25 and ¢cqq0 = .0625,
TI 1 11

p .
zn; (nj-1)

I"I'I =
p+15S +
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CORRECTION FOR LEVEL OF MATES

If mates of one sire are much superior to the mates of another sire, then this
knowledge could be used in evaluating the sires from their progeny averages to avoid bias
from the selected mates. One approach is to set up one equation for each daughter

and one equation for each dam record. For two dams and two daughters:

Daughter 1

/
X ~
/

Sire (a)

Daughter 2

Dam 2 (X4)

The equations to find the b's for I = b1Xq + bpXy + b3Xg + byXy are :

by + 25h%y + 5 h%by+ Ob, = .5h?
25 h%by + by + 0by + .5h%b, = .5h
5 h%by+  0by + by+ Oby=0

0b; + Sh%by+  Obg+  by=0

As expected, by = by = b. But, by = by = -5 h2b; i.c., the weight for the dam is -5 h°
of that for the progeny. This weight is certainly different from weights of the historical
daughter-dam comparison where:

Sire value = Daughter average - Dams' average.

With such a procedure, by = -b; rather than -.5 hzbl.
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The equal parent or American index also weighted the dam record too much.
The "logic" for the equal parent index was that

Progeny value = .5 (Sire value) + .5 (Dam value).

Rearrangement of the terms gives

Sire value = 2 (Progeny average value) - Dams' average,
s0 that by = -.5 by rather than by = -5 h%b,.

The correct procedure can be simplified if the dams (sire's mates) are assumed to
be unrelated so that only two b's are needed because each daughter record receives the
same weight as any other daughter record and each dam record receives the same weight
as any other dam record.

If X, is the average of single records of p daughters and

X2 is the average of single records of the p dams,

the equations to find the weights are:

by = agh?

1+ (p-1) a11'h2] lalzhz
b1 +
P P

[alz h2
p

by + [%] by = ayh?.

The off-diagonal coefficient corresponds to the average covariance between the

daughters and dams. Each daughter has covariance alzhzo)z( with her dam but a

covariance of zero with the other p - 1 dams resulting in Cov(X{,X5) = alzhzoi/p.
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Usually ajp = 25, apy = S5, a1y = S and By = 0 so that

by = —2P _ and by = -5 h2by.
p+A.—h2

Note the similarity to the b; when dams are not considered, e.g., if h? = 25,

by = 2p rather than by = 2p when the dams' records are ignored.
p+14.75 p+15

Similarly, the ry1 changes only slightly because a,, = 0. If h2 = 25,

_ p - p :
Iy = —r rather than rqv = when dams are ignored.
TI \l D+ 1475 TI p+ 15 s

In other words, correction of a progeny proof for differences in mates does not

increase accuracy of evaluation much. The advantage of correcting for differences in mates

is to eliminate bias that would inflate proofs of sires mated to better than average dams.

PROGENY WITH DIFFERENT NUMBERS OF RECORDS

Often in evaluation of sires, progeny may have different numbers of records. A
common example is that Standardbred trotting horses may have many more than one racing
record. One solution to the problem of weighting these records is to set up one equation
for each record. Then the correct weight would be found for each record, but many
equations would be needed. If simplified equations are used, diagonal coefficients will
be 1. RHS's will be aiozh2 as before for all i. In the case of half sibs for sire evaluation,
RHS's will all be .5 hZ. Off-diagonal coefficients will be of two kinds. Coefficients
corresponding to covariances among records on the same animal will be repeatability, r,

because the covariance, oxx = ro)z( . The other coefficients will be aijhz as before where
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3 is the relationship between pairs of animals that made the records. In sire evaluation
from paternal half-sib records, these coefficients will be .25 h2,
Example: Daughter 1 has two records X and X, ,
Daughter 2 has one record X3 ,
Daughter 3 has three records X4 » Xg , and X6 .
To estimate the additive genetic value of their sire from
Daughter 1
X1, Xz)V\
Daughter 2 <#———————— Sire (a)

(X3) /

Daughter 3
(X4, X5, Xg)
the index will be: I = byX; + byX, + byXs + byX, + bsXs + beX -

The equations to find the b's are:

by +  1by + 251%by + 25 h%by + 25 h%bs + 25 hPbg = .5 h

by + by + .25 h%by + 25 W%, + .25 hPbg + 25 h%bg = 5 h?
2512, + 25h%y + by + 25 W%, + 25 h%bs + 25 hPbg = .5 b
250%, + 25h%, + 25h%y+ by +  tbs+  rbg = .5 h?
2502, + 25h%, + 25h%y +  tby+  bs+  rbg = .5h

251%; + 25h%, + 25h%y + by +  tbg+ b = .5h?
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An easier way to obtain the same result is to divide the daughters into groups with

the same number of records for each daughter in a group:

X1 is the average of p; daughters with n; = 1 record,

X, is the average of p, daughters with ny = 2 records,

XN is the average of py daughters with ny = N records.

The equations to find the weights for
I'=b1X{ + by Xy + +o+ + bNXy are:

diby + agph?by + -+ + ajnhlby

1l
o
—
R
[=n
[\®]

a12h2b1 +  dgby Heee s azthbN

1}

=y

[\
R

L[] .
. L)

althbl + a2Nh2b2 + vee 4+ dNbN = aNahz.

If all animals are half-sibs,
1 +(n;-1)r
i (pi-1) 25h2
nj

Pi

agh?= 25b%, and a;h® = 5 b2,

The rq7 can be computed as usual as the square root of the sum of products of the b's and

the corresponding additive relationships on the RHS.
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EVALUATION WITH FULL SIB GROUPS

Some species such as swine and poultry may have full-sib progeny groups. Each male
may be mated to more than one female. If each female produces only one set of progeny,
the animals in each group will be related as full sibs (a;; = .5) but also will be related as
paternal half sibs (aij = .25) to animals in other groups.

If p; is the number in each full sib group, n; = 1 and the sire is to be evaluated,

(a;,=-5), the equations defining the b's are:

dby + 25h%y + -+ + 25h%yN = Sh>
25h%; +  dyby ++e+ + 25h%bN = Sh?
25h%; +« 25h%by + +++ +  dNDN = ShZ  where

1 + (pi-1) .5 h2
Pi '

Modifications would, of course, have to be made for some n > 1, for other possible
relationships such as maternal sibs and for any environmental correlation which is very likely
for animals in the same litter as well as maternal effects in common as discussed in the
chapter on imbedded traits.

Use of other combinations of relatives in the selection index is illustrated in problem
sets. Often the animal will have records (one or more), progeny with records and relatives

with records through both the paternal and maternal sides of the pedigree.



CHAPTER TEN

PROBABILITY STATEMENTS ABOUT TRUE VALUES

One property of selection index is that the average true value, T, for animals with the
same index value, I=I, is I, Thus, I, is the mean of a subdistribution of T for animals

with the same index, I, i.e., the distribution is conditional on IO and the accuracy of

prediction of I, rpy. The variance of T for I=I depends on ry and o% but not on I :

0’

2 2, 2
UT|I=IO = (1-rTI) or-

If T and I follow a bivariate normal distribution, I . and o%'|1=lo determine the
distribution of T for I=Io . After a review of the normal distribution, how to use the
conditional mean and variance to make probability statements about T for I=1 will be

described.

THE NORMAL DISTRIBUTION

2

The mean, p, and the variance, 0“, completely determine the normal distribution.

The normal distribution follows the so-called bell shaped curve.

Frequency of
X values

- u + 0
<——— values of X ——
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Let X be a set of values having a normal distribution. The mean is also the median of the
X values, i.e., one-half the values of X are greater than u and one-half the values are less
than u. The distribution of values is also symmetrical. The curve on the right-hand side of
u is the mirror image of the curve on the left-hand side of . The variance, 02, determines
how flat or how peaked the curve is. A large o2 tends to flatten the curve and a small o2
tends to peak the values about u. The total frequency of X's is 1 or 100%. Thus, the area
under the normal curve is also 1. The fraction of the area above u is 0.5 and the fraction
below u is also 0.5.

A table of areas under the normal curve describes the fraction of the area between
u and u + to or equivalently between u and u - to because the distribution is symmetrical.
This fraction corresponds to the probability that a random value of X will be between
s and p + to . The values of t are multipliers of the standard deviation.

These are two uses of such a table (e.g., Table 10.1):

1) To find probabilities (fractions of total area) corresponding to truncation points
which can be expressed as u + to or u - to depending on which side of u the
truncation point is located and

2) To find truncation points expressed as 4 + to or u - to corresponding to required

probabilities.

Examples of Finding Probabilities Corresponding to Specified Truncation Points
Let 0 = 2 and u = 10 for a distribution of values of X. The problem is to find the

probability that a random value of X will be between 6 and 12.
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TABLE 10.1. AREAS UNDER THE NORMAL CURVE

il .

T

n  utto p-to 2
Truncation Point Area between p+to and p
t or between u-to and pu
.0 .0
1 04
2 .08
3 12
4 .16
5 .19
.6 23
T .26
8 29
9 32
1.0 34
1.1 36
1.2 38
1.3 40
14 42
1.5 43
1.6 445
1.7 455
1.8 464
1.9 471
2.0 477
2.5 494
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The first step in finding probabilities is to draw a picture to describe the problem as
shown for this example. The picture usually will give an approximate answer as a way of

checking the logic of the exact answer.

Because the table gives the area between u and i +to, the solution is to find the area
between 4 = 10 and ¢ + t1p0 = 12 and the area between u =10 and p - tg@ = 6.
Subscripts on the t's are to identify the truncation points. Total area is sum of the two
parts. In more formal terms: P(6 < X < 12) = P(6 < X < 10) + P(10 < X < 12).

To use the table, t{, and tg must be calculated:

p+tp0 =12 butp =10ando = 2. Thustjp = (12-10)/2=1.
The corresponding area (Table 10.1) is .34 .
The general method of finding a t corresponding to a positive truncation point, i.e.,

a point greater than the mean is to write the equality and solve for ¢:

u+to-u - truncation point - pu
o o

t =

On the left side of u, ptgo = 6 and thus, 10 - te (2) = 6 and tg = 2.

For t = 2, the corresponding area is .477 between 6 and 10.
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For t corresponding to truncation points less than the mean,

truncation point - u | truncation point - u|
p . In general, t = P .
o o

The total area between 6 and 12 is .477 + .34 = 817, which is the fraction of X's

t = -

expected to have values between 6 and 12 or equivalently the probability that any random
X will be between 6 and 12.

Another example is to find the probability of an X value above a truncation point,
such as 12. Then, 4 + to = 12 withu = 10 and 0 = 2 and P(10 < X < 12) = .34,
Obviously, P(10 < X < ) = .5, Thus, P(12 < X < ) = .5-.34 = .16.

The probability of a random X less than 12 can be found by similar logic, i.e.,

P(w < X < 12) = P(0 < X < 10) + P(10 < X < 12) = .50 + .34 = .84.

Examples of Finding Truncation Points Corresponding to Specified Probabilities

Find the region which includes 90% of values of X which is also the probability that
a random value of X will be in that region. These ranges may be chosen so that they are
symmetrical about 4, i.e., s +to is the upper limit, and p -to is the lower limit with t the
same in both upper and lower limits. First, draw the picture which will show that the area
from u to 4 + to must be .90/2 = 45. The t corresponding to an area of .45 is about
halfway between 1.6 and 1.7 solett = 1.65. If 4 = 10 and o = 2 as before, the upper limit
is 10 + 1.65(2) = 13.30, and the lower limit is 10 - 1.65(2) = 6.70 .

Next, find the truncation point which 90% of the values of X will exceed for the

example with 4 = 10and o = 2.
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T

i “ m"mm"“““mm“NNI|||||||||||m"...,,,,,,,,m,m

The t corresponding to an area of .40 between u and u - to must be found. From
Table 10.1, t ~ 1.3. Thus, the truncation point is 10 - 1.3(2) = 7.4. The probability of a

random X having a higher value is 90%. Also, 90% of the values of X will be greater

than 7.4,

APPLICATIONS TO ESTIMATING TRUE VALUE

One property of the selection index is “T|I=Io = I,  Thus, I, corresponds to the

mean of the distribution of T values for animals with the same index. Thus, I0 can be

substituted for u of the normal distribution. Similarly, oy |1-1, will be substituted for o of

0 Io+tor|1-1,

the general distribution. A typical picture is:

T

<— Values of T|I1=], ——
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EXAMPLES
Probability Statements About Additive Genetic Values; T = GAa .

A bull has 35 progeny with 1 record each averaging +200; h? = 25; 0%0 = 1000000.
What is the probability his true additive genetic value is greater than zero?

For h? = 25, A =15 so that

- 2p _ 70
) p+15 50’
Thus OT|1=Iy = (1 - .70) (1000000) = 300000 and OT|1=1, = 548.

Io = (14)(200) = 280, and ryy = —E_ = .70.

The picture is:

t
Io-tor|=280 =0 T =280

|0 - 280]
548
0 and 280 as .19. Thus, the probability that T for the bull will exceed zero is

Then, t = = 51. The corresponding area gives the fraction between

S0 + .19 = .69. Correspondingly, the probability that his true value is less than zero

is 1.00 - .69 = .31.

Probability Statements About A Future Record
The previous discussion was about the probability that an animal's additive genetic

value was between, above, or below certain truncation points given the index estimate of
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breeding value and the corresponding ry and 0(23. In fact, if the animal actually makes a
record, in addition to its genetic value, a new random environmental effect influences the
record. Thus, variance of records for animals with a predicted genetic value depends on the
variance of additive genetic values given the index plus the variance of environmental
effects. In this case of predicting a future record, T = X, = G Ay * E,, Lis the prediction
of a future phenotypic record of animal a that has no previous record. In this example, the
assumption is that G, = G Ay The selection index equations to find the appropriate
weights for the X's are, as usual, on the left-hand sides, the variances and covariances of the

X's. The right hand sides are:

E(X)(Ga, * Eo)] = E[Ga; *+ E)(Ga_ * Eq)]

E(GAiGAa+ GAiEa"' GAaEi +E{E,).

ox iT

The middle two terms are genetic-environmental covariances which are usually assumed to
be zero. The first term is a ao%o for G A= G, and the last term is the covariance between
environmental effects on a record of i and on a record of a which may or not be zero. With
no environmental covariance, the right-hand sides are aiao%o = aiahzo)z( as for predicting
additive genetic value so that the index for predicting a future record is exactly the same as
for predicting additive genetic value. The reason is that there is no way of predicting a

random and independent E, for the new record.
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The ryy and 02, however, are different from the case when I predicted G5 . Now
TI T o

o% = E(Tz) = E(G Ayt Ea)2 = OZGA + a% = og( rather than GZGA = hzcr?(. The

numerator of Iy is zbia.iahzo)z( as before, but

2 2
_ zbjajgh "oy _ W
m= |——— ° Zbj2iq
’x
rather than \/Tbja;, because prediction of E , is zero. 'I‘hena-zrlI=IO = (1-h 22biaia)"§(

rather than (1-Zbja;,)h Zoi. Notice that many of the same quantities, =b;a; ,,

h2, 0)2(, are
involved whether prediction is for G A, O X =G A, * E, ; the arrangement, however,

is different in important ways.

Prediction of a Progeny Record from Prediction of Additive Genetic Values of the Parents
The application of these distributional properties makes sense primarily when records
of ancestors are used in estimating the animal's genetic value, as for example, if the sire's

and dam's estimated additive genetic values are used in estimating the additive genetic value

Ggire + G
of their progeny: Gprogeny = S 5 dam which also predicts a record of the progeny.

The r%l for additive genetic value of a progeny equals one-fourth the sum of the r%l

for additive genetic value of sire and dam. This equality can be shown by setting up the
equations to predict the additive genetic values of sire and dam and then to predict the
average of the additive genetic values of the sire and dam. Assume for milk yield that

h% = .25 and 6% = (2000 Ib)2.
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The following table shows the effect of increasing r%l for sire and dam onoy | I<I,

of the progeny.

r%l oX|1=I, 95% probability range =

Sire Dam Progeny (for progeny) Ip * 196 ox|1-1

0 0 0 2000 Ib. I, = 3920

25 0 0625 1984 I, + 3889

25 25 1250 1968 I, = 3857

50 50 2500 1936 I, = 3795

a5 S0 3125 1920 I, = 3763

75 5 3750 1904 I, £ 3732
1.00 75 4375 1887 I, * 3699
1.00 1.00 5000 1871 I, * 3667

The obvious conclusion from this chart is that the average error of predicting a
record of a progeny (o | I=Io) does not decrease very much even with perfect prediction

of the parents' genetic values when o% is relatively large.

Probability Statements About Differences in Genetic Values for Unrelated Animals
Assume animal 1 has index value Iy with r%ll and animal 2 has index value I, with
r%lz. Differences in true additive genetic values for animals with index values I and I,
will have a distribution corresponding to the definition of T = GA1 - GA2. The
immediate problem is to determine the mean and variance for the distribution of

T;-T,|1{-I; . The mean is the same as the mean of (T; |1 = I;)-(T,|I = L) and is
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The variance can be determined by the rules for the variance of a linear function or can be
derived from the selection index procedure for

T = Gp; - Ga, withI = byX; + byX,. By rules for variance of a linear function,
because the covariance between Ty | I=I4 and T2]I=12 is zero if the records in Iy and I,

are independent. Thus,

V(T 11=1y) - (T, |1=Ly)] = (2 - r%ll - r-12-12)02G.

These parameters can be used to make probability statements about the difference in true
values for animals with indexes Il and I,. In this case, 11-12 replaces u of the general
discussion and (2 - r%ll - r’%‘IZ)UZG replaces o2,

As a numerical example, suppose I; = 500 and I, = 200, ie., I;-I = 300 and
r%ll = .75 and r.12--12 = .25 and OZG = (1000)2. What is the probability that the true

difference in genetic values is zero or less, i.e., that an animal with I, = 200 actually has

equal or greater true value than an animal with I; = 500?

The picture is:

1 t
0 IyI, = 300

\'4

~—T4|I; - Th|L,
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The problem is to find Prob[(T;|I; - T, |I,)< 0].
Thus,

2 2 2
0= (Il -12) -t\l(z_r’rIl -I'rIvIZ)O'G .

Then,

t = (300 -0)/[y(Z - .75 - 25) (1000)] = 3.

The corresponding area between 0 and 300 is .12 and the area below 0 is .5 - .12 = .38,
which is the probability that the animal with the smaller index, 12 = 200, will have a higher
additive genetic value than the animal with the larger index, I; = 500.

A more direct approach would be to define T = G Aq~ G Ag» Use all information

to predict T, and then follow the general selection index procedure.
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SUMMARY OF DISTRIBUTIONS ASSOCIATED WITH SELECTION INDEX

Often there is some confusion about what 1 and o are. Actually neither p nor o has
any meaning unless defined in terms of the variable they describe. In development of the
selection index for a particular trait there are at least 6 variables.

1) The basic distribution is of phenotypic records, the P's, or as they have also been
called, the X's. The mean is By and the variance is 072( = oé + 0123 (the genetic plus
environmental variance).

2) For additive genetic values, the mean is bG = 0 and the variance is 0%0 = hzo)z(.

3) The criterion for predicting a G is the index estimate, I. The mean
is uy = 0 and the variance is o% = r%-loé . Note that o% < 0(2; because r%l <L

4) Animals with the same index value may not have the same true value.
The distribution of true values given an index value has mean pT|I=IO =1, and
variance o%ll:lo = (l—r%)o%;[(l—r.lz—[)oé, if T=G].

5) Records of an animal with an index value I have a different distribution from
records with no estimate of true value. The distribution of records for animals with an
index of I has mean “X|I=Io = 1, and variance a§(|1=10 = (1-r%1)o>2< when r%[ is for
predicting a future record, X.

6) The difference in additive genetic values for animals with index values
I{ and I, is distributed with mean KTy |I=11 - P14l and variance

°'2I‘|I=Il + a%|1=12 = (2—r%[1—r12-12)aé when the indexes are independent.
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The standard deviations for the six distributions are:

1) X,Gx= ‘Oé"'o%;
2) GA,aG=\jh2 02G+o%;

3) [Itopredict Gy, 01 = r[9G 5

4) Ggivenl=I,, OT|I-I, = l(l-r%l) oé;
. 2 . . . 2, 2
5) X given I=I, when r4y is for predicting X, oy 1=1, = (l—r—n) ox

2 2 2
6) GqlI=I; - G,|I=1,, 9G1-Go 141, = \I(Z-rnl-rrnz) 9G-




CHAPTER 11

SUPERIORITY OF SELECTED GROUPS

AVERAGE OF SELECTED GROUP

The basic principle in selection is to select the best and cull the rest. The selection
index is the best linear method of evaluating animals to determine which to select or cull.
The selection index is unbiased so an estimate of the superiority of the selected group is
simply the average index of the selected group minus the average index of the whole group
from which the selected group came. Another question, however, is how to determine how
much better the selected ones are expected to be than the original group before the indexes
are calculated? The answer to this question relies on theory based on the normal

distribution of true values and index values.

THE NORMAL DISTRIBUTION

The basic problem is this. If a fraction, p, is selected from a normal distribution with

2

mean, u, and variance, o, what will be the mean of the selected group, b ? The problem

may be diagrammed as:

139
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The truncation point, 4 +to, depends on p as in Chapter 10.

The expected or average value of the fraction p can be found from integrating:

by = — xf(x)dx = p+Do where f(x) is the density function
u+to

of the normal distribution. Fortunately, tables are available that give values of D given the
fraction selected, p.

The difference from p, Do, is zo/p where z/o is the height of the normal curve at
the truncation point and p is the fraction selected. Note that D = z/p, the height of the
normal curve for ¢ = 1. The tables of D are based on the normal distribution with o = 1.
To convert the table of D values to any other distribution, multiply by 0. Many texts use
i rather than D to describe the standardized selection differential.

Note that Mg - B = Do, which is sometimes known as the selection differential (not
standardized for o). If 4 = 0, by = Do.

The table of D for small samples is based on expected values of order statistics
(Table 11.1). The values are not the same as z/p. The table of D for large samples is the
same as z/p (Table 11.2). Dr. C. R. Henderson proposed an approximate correction for
sample size for this table, i.e.,, D' = D - g , where s is the number selected. Note s is not

s
the number available for selection.

EXAMPLE OF SELECTION BIAS

A breed organization reports a dairy bull has 100 daughters. The average of the top
20 is +1000 Ib of milk. The standard deviation of records of cows by the same sire is about
2000 Ib. What would the average of the 100 daughters be expected to be?

The fraction selected is 20 of 100 or, 20%. The corresponding value of D = 14,
Thus, D' = 1.4 - 25/20 = 1.3875.
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From the normal theory
B = B+ Do, ie,
1000 = p + 1.3875(2000) so that p = 1000 - 1.3875(2000) = -1775Ib .
Evaluation of the bull on his top 20 daughters would have been considerably
misleading. An interesting question is what should be the number of daughters to use in
the formula for estimating the genetic value of this bull--20 or 100 or something else?
Schaeffer et al. (1970) developed a solution for this problem which depends mainly on the

fraction selected.

TABLE 11.1. EXPECTED AVERAGE OF A GROUP SELECTED OUT OF A SAMPLE
FROM A NORMAL POPULATION WHEN THE SAMPLE SIZE IS SMALL
(INUNITSOF o = 1)

Sample Number selected

Size 1 2 3 4 s 6 7 8 9 10 11 12 13 14
2 S6 .00

3 85 42 .00

4 1.03 .66 34 .00

5 1.16 .83 S5 29 .00

6 1.27 .95 70 48 .25 .00

7 1.35 1.05 82 62 42 23 .00

8 142 1.14 92 J3 .55 38 20 .00

9 149 121 1.00 82 65 50 35 .19 .00

10 1.54 127 107 89 74 60 46 32 .17 .00

11 1.59 132 112 96 .81 .68 .55 42 29 .16 .00

12 163 137 118 102 .8 .75 .63 51 39 27 .14 .00

13 1.67 142 123 107 93 .81 .69 .58 48 37 .26 .14 .00

14 170 146 127 112 99 87 76 .65 S5 45 35 24 .13 .00

15 1.74 149 131 116 103 .92 81 .71 .61 .52 42 33 23 .12
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TABLE 11.2. EXPECTED AVERAGE OF CERTAIN FRACTIONS SELECTED OUT
OF A SAMPLE FROM A NORMAL POPULATION
(INUNITSOF ¢ = 1)

Table for .001-,099 Selected

000 001 002 .003 .004 .005 006 .007 _.008 .009
.00 3.400 3200 3.033 2975 2900 2.850 2.800 2738 2.706
01 [2660 2636 2600 2569 2550 2527 2500 2482 2456 2442
02 [2420 2400 2386 2370 2363 2336 2323 2311 2293 2283
03 2270 2258 2241 2230 2221 2209 2200 2.18 2174 2.164
04 2153 2146 2.136 2126 2.116 2107 2.098 2.087 2.079 2.071
05 2064 2057 2048 2040 2.031 2.022 2.016 2.009 2.000 1990
06 1985 1977 1971 1965 1958 1951 1944 1937 1931 1.925
07 | 1919 1911 1906 1900 1.893 1.888 1882 1.875 1.871 1.863
08 |[1.858 1852 1846 1.841 1.837 1.834 1.826 1.820 1.815 1.810
09 [1.806 1799 1793 1.788 1.784 1780 1.775 1.770 1.765 1.760

Table for .10-.99 Selected

.00 .01 .02 .03 04 05 06 07 .08 .09
A0 | 1755 1709 1.667 1.628 1.590 1.554 1.52.1 1.488 1458 1428
20 | 1400 1372 1346 1320 1295 1271 1248 1225 1202 1.180
30 | 1159 1138 1.118 1.097 1.078 1.058 1.039 1.021 1.002 .984
40 966 948 931 913 .89 880 863 .846 .830 814
S0 J98 182 766 151 73S 720 704 689 674  .659
.60 644 629 614 599 58 570 555 540 526 511
70 497 482 468 453 438 424 409 394 380 365
.80 350 335 320 305 290 274 259 243 227 211
.90 J95 179 162 144 127 109 090  .070  .049  .027

If the number selected is less than 500, subtract from D the quantity .25/s, where s is the
number selected.
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GENETIC SUPERIORITY OF SELECTED GROUP

A fraction of animals is to be selected for T based on their index values. What is the
expected superiority in T of the selected group?

The selected I's, if normally distributed, will be expected to average HI = ML Doy.
Note that By = 0= BT before selection, o1 = I and [.LTS = “Is because I is unbiased.
Then, making these substitutions, KT = BT * rriorD as described in most animal

breeding literature. The same result can be obtained by the regression of T on I:

2
T, = KT * br.1(by -#D) = kT + (oT1/0P)(K] + Doy - mp

pr + (oT1/0opPD = pr + rprorD by multiplying by o/o.

Thus, the genetic selection differential per generation will be AG = ryDop. If L is the
generation interval in years, then genetic progress per year,
AG/yr = ryDo/L.

For any given set of animals, however, the best estimate of the genetic superiority of the
selected group is “Is -ug, the difference in average index value of the selected and whole
population. The indexes are unbiased predictions of genetic value so that averages of these
are also unbiased. In fact, the difference in the averages is the selection index prediction
of the difference between the selected group and the group from which they were selected.

The expression AG/yr = ryDo/L can be used to compare the potential of various
selection programs. This equation is the key equation for designing breeding programs for

genetic improvement. Sometimes the best balance of ry, D, and L will have to be found.

Example of Finding Optimum Number of Progeny Per Sire and Number of Sires to Sample

Suppose that only 1000 progeny are available each year for progeny testing.
Two replacements are needed each year from the males that are progeny tested.
Assume h? = 25 and o = 1000 Ib. milk. The following table illustrates that neither the

largest ry nor the greatest selection intensity gives the highest genetic progress.
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SOME POSSIBLE COMBINATIONS OF NUMBER OF MALES PER SAMPLE AND
NUMBER OF PROGENY PER SIRE

Number / Number Number progeny p 25

selected / sampled % per male sampled rqy = '=D-=— op AG
\ p+15 2

20f2 100 500 985 0 10001b O1Ib

20f5 40 200 964 84 1000 810

2 of 20 10 50 877 1.63 1000 1429

2 of 50 4 20 756 2.03 1000 1535

2 of 100 2 10 633 2.30 1000 1456

2 of 200 1 5 500 2.54 1000 1270

Of the six combinations, testing 50 males each with 20 progeny seems to be best. In
actual practice, income and cost values must be assigned to each plan. Since AG for
selecting 2 of 20 sampled is nearly as great as AG for 2 of 50, that may be the most
profitable plan. Other factors should also be considered in finding an optimum plan. The
fraction of the population devoted to progeny proving is another variable in some cases.
The generation interval may also be important.

The preceding example ignored the fact that AG is usually different for males and
females since ry, D, and generation interval all may be different for males and females.
Total expected genetic response per year depends on both as will be seen, although the
expected genetic superiority of the offspring is the average of the superiorities of the

selected males and females.

GENETIC VALUE OF PROGENY

Let AS = r—nSD S0G , where AS is the genetic superiority of selected sires, ITig is
the accuracy of the index for sires, and DS is the selection intensity factor for sire selection.
Similarly, let AD = rTIDDD“G , the genetic superiority of selected dams. Then, because
progeny receive a sample half of the genetic value of each of their parents, the superiority
of progeny as compared to randomly mating males and females is:

Gprogeny = (AS + AD)/2.
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GENETIC IMPROVEMENT PER YEAR

Let Ag be genetic improvement per year, Lg be the generation interval in years for
sires, and Lpy be the generation interval for dams. Then, Ag = (AS + AD)/(Lg + Lp),
which is not [(AS/Lg) + (AD/Lp)}/2 unless Lg = Lpy. The proof is somewhat circular:

Let S be the genetic value of sires selected to produce the next generation and D be
the value of selected dams. These selected sires are born Lg years before they produce
replacement progeny with genetic value P. The genetic average of sires born Lg years ago
is P-LgAg. The superiority of the selected sires over that average is AS. Thus,
S=P- I_SAg + AS. Similarly, D = P - LpAg + AD. Because P = (S + D)/2,
then by substitution: P = (S + D)/2 = (1/2)(P - LgAg + AS + P -LpAg + AD).
After subtracting P from both sides, 0 = -LgAg - LpAg + AS + AD. Rearranging gives
Ag(Lg + Lp) = AS + AD, and finally: Ag = (AS + AD)/(Lg + Lp), a result due to
Dickerson and Hazel (1944).

Rendel and Robertson (1950) extended this procedure to consider four paths of
selection: sires of sires (SS), dams of sires (DS), sires of dams (SD), and dams of dams

(DD) with generation intervals LSS' LDS’ LSD' and LDD’ respectively.

SS

\

Progeny

/
\

A

DD
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Let ASS, ADS, ASD, and ADD be the respective genetic superiorities of the
selected grandparents as differences from their generation averages. For example,
ASS = I'Tigg Dggo. By similar reasoning as before

S§ = §-LggAg + ASS,

DS = S-LpgAg + ADS,

SD =D -LgpAg + ASD, and

DD = D -LppAg + ADD.

Because S = (SS + DS)/2 and D = (SD + DD)/2, then

Gprogeny = (S + D)/2 = (SS + DS + SD + DD)/4. Thus, by substitution,

S+D

= (S-LggAg + ASS + S-LpgAg + ADS + D - LgpAg + ASD +

After rearranging and subtracting (S + D)/2 from both sides,
Ag(Lgg + Lpg + Lgp + Lpp) = ASS + ADS + ASD + ADD, so that

Ag = (ASS + ADS + ASD + ADD)/(Lgg + Lpg + Lgp + Lpp)-

Genetic progress per year, then, is equivalent to the average superiority of the

selected grandparents divided by the average generation interval of the different

grandparent paths.

This expression or the preceding one involving just sires and dams can be used to

compare expected genetic progress for different selection programs considering differences

in generation intervals, selection intensities, and accuracies of prediction.
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SELECTION INDEX FLOW CHART FOR SINGLE TRAITS

The following six steps are a guide to using selection index for prediction of true
value and design of optimum breeding programs. The various distributions involved with
selection index properties and their means and variances also are described.

1) Define T.

2) T=1= b1X1 + oo + bNXN, X's are available records, I = b’x .

3) Selection index equations determine b's which minimize E[(T-I)z] Or maximize Iy

2
ox, 01+ oX X 02 + o = oxyT
2
OX1Xp 01 * ox, b2 F eer = oxoT,

In matrix notation: Pb = ¢, sothatb = P'lc.
The oii, UXin’ and oX,T are determined from expected values,
definition of T and models for Xl .
Models: X; =G, +E or

Xij = G; + PE; + TE;; for traits with repeated records.

ij
= 2 2.2 2 2

E(GIGJ) = alJO'IO + aljozo + dl_]OOI + aleIJ(Jll + -
= 2

4) Rank animals using b;'s and Xj's, 1 = b'x with actual Xs.

147
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5) Probability statements when T| I=1, has a normal distribution are based on:
E(T|I = Ip) =1,
= - 2\ 2
V(T|I = Iy) = (-rfpot

4y = (zbiaXiT)/a%; b'c/o%.

I0 IO + toT|] = 1,

6) Theoretical comparison of selection programs
One path;
AT = DUI = DI'TIOT

Two paths, additive genetic value;

AS + AD

Ag/yr = =~
g/yr Lo Lip

where AS = I'TIgDGOG » €t¢-

Four paths, additive genetic value;

ASS + ADS + ASD + ADD

Ag/yr =
Lss + Lps + Lsp + Lpp




Flow Chart 149

DISTRIBUTIONS INVOLVED WITH PREDICTING ADDITIVE GENETIC VALUE

Distribution Mean Variance
1) P;, phenotypic Fp 0}2(
2) X, adjusted phenotypic record, P; - bp 0 0)2(
3) Gp,, additive genetic value 0 h%0 %
4) L, prediction of additive genetic value 0 r%lhzo)z( *
5) Gp,lla = I, additive genetic value for 1, (1r3ph%ed  *
animals with index = I
6) G Ay ~ I,, prediction error 0 (l-r%l)hza)z( *

x 2 - .
1y depends on T, but for T = G A

=bhioy.

r%l = ;ZXZLT. if not inbred, and
h ox

) bjox.T

M = ._._....._1_2_ if inbred.
(1+F)h 205



CHAPTER 13

SELECTION WITH MORE THAN ONE TRAIT MEASURED

The contribution of genetic effects and environmental effects to the correlation
between two traits can be described in the form of a simple model for phenotypic records
of traits 1 and 2 expressed as differences from their means:

X1=P1-py =01 +G  +E{ -4 =G + E

X2=P2-[J.2=u2+G2+E2-MZ=G2+E2 with

01231 =o§<1 = oél + oél, which implies 9G{E; =0;
012)2 = oiz = °2G2 + oéz, which implies 9G,E, = 0;and

°P1P2 = OX1X2 = 0G1G, + UEIEZ’ which implies oGlEZ = GGZEI
Note that oG 1G2 is the genetic covariance and OE{E, is the environmental covariance
between traits 1 and 2. In this chapter additive genetic effects will be assumed to be the
only genetic effects. If other than additive genetic effects are present, the procedures

described in this chapter can be changed easily to account for the other genetic effects.
The genetic correlation between traits 1 and 2 is:
7G1G2

2 2

151
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The environmental correlation is:

?Eq1Ep
T =
02 02
E1 "Ep
The phenotypic correlation is:
. 7G1G; " 7E(Ep _ XX
p
(02 +02 )(02 +02 ) 02 02
Gq E{"VGy E, X17Xy

SELECTION FOR MORE THAN ONE TRAIT
There are several reasons for considering more than one trait in a selection program.
1. Records of other traits may be used in selecting for a single trait.
2. Several traits may be economically important so that joint selection is desirable.
3. Several economically important traits are to be improved but other traits are at
an optimum level so that they should not be allowed to change.
4. In all cases, the correlated response in many traits may be of interest even if

selection is not for all traits.

Definition of Overall Genetic Value and General Problem of Selection
If m traits have linear economic value, then overall or aggregate genetic value for

animal a can be defined as:

m
Tch = VlGal + v2Ga2 + eoe + VmGam = j?l vj Gaj where

Gaj is the additive genetic value of animal a for trait j, and Vi is the net economic
value per unit of trait j. As before, a% = E[Tz].
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Since the G's are in units of measurement and the v's are values per unit, the overall
aggregate true or genetic value is in economic units -- for example, dollars or cents.
Next, suppose records are available for N traits measured on the animal to be
evaluated [Xl, Xz, RN XN]. These records may, but need not, be included in the m
traits included in overall economic value. The case when records on relatives are available
will be discussed in Chapter 14. Thus, records on several traits are available to estimate T .
The problem is, as before, to weight each record to estimate Ta with an index of the traits,
ie., Ta =]= lel + BZXZ + e + BNXN, where the B's are the weights which will
maximize ry and AT. Several approaches to estimating T are equivalent, although proving
the equivalence is not always easy. The general selection index procedure and properties
as described in Chapter 7 apply to the multiple trait case as well as to the single trait case.

The appendix to this chapter describes multiple trait selection index procedures in the

notation of matrix algebra.

METHODS USING PHENOTYPIC RECORDS EXPRESSED AS DEVIATIONS FROM
APPROPRIATE POPULATION AVERAGES
Records expressed as differences from population averages were considered for
selection using records on relatives for only one trait. All traits measured on an animal will

also be expressed as differences from their population averages.

Index Each Trait Separately

This method is perhaps the easiest to apply and to understand. The genetic value

for each trait is estimated separately using all the traits with measurements, X; (i=1, « + +, N).
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Then the indexes, Ij, for the traits are substituted for genetic values, Gj, in the definition of
T. For example, estimate Gj by Ij = bJ-le + bj2X2 + c0e 4+ ijXN' The first subscript

on the b's refers to the trait being evaluated and the second subscript to the trait being
weighted in the index. The equations which define the weights are the usual ones to

maximize ry and to predict Gj :

2 b b bey =
9%y LT 9XXp Pt ottt O9XgXN PN T 9X4Gj

2
oXlXZ bjl + OX2 bj2 + e + OXZXN ij = Oszj

. .
. L] . L]

2
IX1XN bjl + IXHXN bj2 + e 4+ OXN ij = GXNGj

Then, Ij = bJIXI + b2X2 + oo + bNXN .

This procedure is repeated for all m traits with economic values so that:
11=b11X1+b12X2 +"'+b1NXN
Iz=b21X1+b22X2 +"'+b2NXN,

I,=b

m1X1+bm2X2+ eee +meXN

Then because Ij estimates G;, the Ij will be substituted for Gj in the economic
equation;
T = vq Gl + vy Gz +oeee vy Gm so that the estimate of overall economic value

T=1= vq 11 + vy 12 +oeee vy Im where I is the overall index estimate of T.
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In setting up the selection index equations to determine the weights for each index,
the coefficients of the weights are the same (og(l, ox 1Xp0 etc.) no matter which trait is
being indexed. The equations to find the weights change in the first subscript of the b's (the
subscript for the trait being evaluated) and in the covariances on the RHS's. Depending on
the trait to be evaluated, the RHS's correspond to the traits measured and are of the form:

OXiGj (i=1, + -, N) for evaluation of trait j.
Because in this example X is measured on animal a and G; is the genetic value for

J

trait j of animal @ and X; = G; + E;, then E(XiGj) = oxiGj = aGiGj which is the

genetic covariance between traits iand j because OE;G; is assumed to be zero. The

i i h2n2 h d
covariance cGiGj also can be written as rgij ihj oX; oxj where ox. an axj

are the phenotypic standard deviations for traits i and j.

Although I can be calculated as Vlll + oo + lem’ obviously the overall index can

be rewritten as I = B;X; + ByXy + +++ + B\Xy because each Ij contains all the
X;. In fact, appropriate multiplications and grouping of coefficients show:

Bl=V1b11 +V2b2i+ eee +v Db

mPmi with, e.g.,

B1 =vibyg + vobpy + oo + vpbog -
The advantage of this method over the next one is that if economic values change,
the equations to find the b's do not have to be solved again. The new economic values are
simply substituted in the last step of the procedure, i.e, I = viI; + «+« + v I .
If Vi = 0, there is no need to find the Ij to predict Gj since Ij will drop out of the
overall index. The overall index, however, will include XJ if it is used in predicting genetic
value of some other trait and, therefore, overall merit. If all Vj = 0 except for one trait,

then overall economic value is defined as equal to the genetic value for the one trait that

is being predicted by all the traits.
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Index Overall Genetic Value Directly

The T in the general selection procedure to set up the index equations to find the
m

appropriate weights for the X'sis T, = X VjGj . The equations that define the 8's and
21

J
maximize Iy are as before:

02 B1 +0 By + e+ +0 BN =0
X1 1 X1Xo P2 X1XN PN XIT

L] L]
L]

OX XN Bl * OXXn B2+ vt o BN = oXNT
14N 24N XN N

The coefficients of the weights on the LHS's are the same as when finding the
weights to index each trait separately. The RHS's (the OXT> i=1, -+, N) are the
covariances between X] and the linear function, VIGI + oo + Vme . By the usual rules
for finding the covariance between linear functions and by assuming no covariances between
genetic values and environmental values:

E(X;T) = OX.T = Cov(X;, v{Gy + =+ + v, ,G )

= vloGiGl + V2°GiG2 + e + vmaGiGm

m
P VjaGiGj

j=1

2,2 _
Recall that OGiGj = rgij hihj oxiaxj and also note when G; = Gy that

9G;G; = °2Gi = h; c%(i . Solving the equations for the B's then gives the index

N

[=8:X; + ByX5 + ++« + BXp which is the same index as found earlier when indexing
each trait separately and then weighting by economic value as I = vqI{ + ««« + v I ..

Proof of the equivalence of the two procedures is in the appendix.
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EXPECTED RESPONSE FROM SELECTION FOR ECONOMIC VALUE
Total response in economic value can be determined as before by either
AT = Doy or with more difficulty with AT = ryDowhere a% can be found as the variance

of the linear function:

N
V() = E[(.Z:1 ﬁixi)zl and rqq = \JzBiOXiT/O%
i= '

where the OX.T (i=1, »++, N) are the covariances of linear functions and o% is the
variance of the linear function, T = ‘r):nl VjGj.

Often the expected correlatedl;esponse for one or more traits is of interest when
selecting for some overall defined economic value. For any index, whether the selection
index or any other, the expected correlated genetic response for any trait j can be found by

the regression of Gj onk

Gj = “Gj * bGj~I(Isel - BD

where the average selected I, Ll is:

uy + Doy and Gj = KG; * AG;; thus, AG; = [Cov(Gj,I)]D/aI where

Cov(G;,I) = COV(Gj, lel + e + BNXN) =

ﬁl"Gle +oeee ﬁzoGsz +oeee 4 BN"GjGN'
This formula holds for any trait whether included in T or I. However, the correlated
responses of the traits included in T when weighted by their economic values will equal
total economic response; i.e., AT = v{AG] + v5 AGy + =+ + v, AG, .

An example follows for selection for two traits. Included are examples of

comparing expected correlated responses in the two traits when selection is for only one

of them using either both traits or only one trait.
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EXAMPLES
Selecting For More Than One Trait

Let milk yield = trait 1, type score = trait 2

2 _ 2 2 _ 2 _ _

Xy = (2000 1b) Xy (2%) OX X, =400 b % I = .
2 _ 2 2 _ 2 _ _

Gy = (1000 1b) G, = (1%) 9GG, =200 b % ry =
2 2

hi = .25 hs =.25

Suppose v, = $.025/Ib and v, = $50./% .

2

4000000 by + 400byy = ox,G, = oG, = 1000000
Thus, I; = 2475 X, + 252525 X, .
Then find 12 = b21 Xl + b22 X2
4,000,000 by; + 400byy = ox G, = 200

Thus, I, = .00002525 X; + 2475 X, so that:
1= (0251 + (501,
= [.025(:2475) + 50(.00002525)]X; + [.025(25.2525) + 50(.2475)]X,

I= lel + BZXZ = .00745 Xl + 13.006 X2 will be the overall index.

Total Response

2 2 2 2
AG =D op a% = ‘Gl °X1 + 32 °X2 + 28182 0X1X2 =976 and

AG =D 976 = 3124 D (3), total expected economic response.
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Correlated Responses

[Cov(G5,1)] D

AGz = O‘I

with
Cov(Gyl) = By 0G,G, * 2 asz = .00745(200) + 13.006(1) = 14.5;

14.5
dAG, = 19 p - 464% (D).
ame a2 = 3x; 64% (D)

[Cov(G ]

AG] = OI

with Cov(Gyl) = B10G;, + B2 9G,G, = 10051

and AG, = 01p - 3171p (D).
3124

As it should, AG = v; AG; + v, AG, = .025(321.7 D) + 50. (464 D) =

804D + 232D = 3124 D = Doj.

If the correlated response in another trait, e.g., fat test = trait 3, is of interest,

then:
_ [Cov(G3.D] )
AG; = O—ID with Cov(G3,I) = B 9G3G; * P2 9G3G,:
2 2 2
If r =-0,T1 =.1, oy. =(.3%)"°, and hy = .5;
then:
2
_ 2 2 _ 2 _
°G1G3 * Tgr3 |Gy %G = 60 V(1000)2(.045) = 127, and
i 2 2 e -
9G,G3 = Tgp3 N °G2 °G3 = .10 y(1)“(.045) = .02121.

159
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Then: Cov(G3,I) = .00745(-127) + 13.006(.02121) = -.67 and

I (X)) P .
AGj = (31‘24D 021 D (%).

Selecting For One Trait Using Two Traits
Suppose v, = 0, then vy can be any positive nonzero value because obviously v4
will not change ranking based on I = v{I;; unity is a convenient value for vy .

If vy ® 1, then

[Cov(G1,1)]

AG]. = —-C}—I--—D bUtI = Vlll SO that
v1Cov(G1,I Cov(G1,I
AGI = V1 G 1)]D =MD asforv1= 1.
V1 011 011
Thus for vi=1 and vy =0 I=1; = 2475 Xy + 25.2525 X2.
Response
AGl = AII =D O'Il y

2 2 2
of, = (.2475)20X1+(25.2525)20X2+2(.2475) (25.2525) 0¥ X, = 250