

Nutrition Basics for Welfare and Financial Sustainability in Ruminant Production Systems

Alfredo DiCostanzo, Ph.D.

Professor and State Beef Cattle Extension
Specialist
University of Minnesota

Ruminant Production Systems

- Diverse
 - Grazing systems meat or milk
 - Cattle
 - Sheep
 - Goats
 - Drylot systems—meat or milk
 - Cattle
 - Sheep
 - Goats*

Production Systems

- Regardless of the species or purpose, we enter into an unwritten covenant to provide or maintain:
 - Safety
 - Comfort
 - Health
 - Feed and water
 - Feed—50% to 75% of cost of production
 - Feed consumption
 - » Welfare/financial sustainability

Ruminal fermentation

- Energy byproducts
 - Volatile fatty acids
 - Lipids
 - Protein and peptide fractions

- Nitrogen
- Microbial protein
- B Vitamins
- Detoxified substances

What nutrients should we provide?

Energy

- carbohydrates,
 proteins and lipids
- maintenance, growth and milk production
- Protein
 - non-protein nitrogen, rumen degradable and undegradable
- Vitamins A, D, E
- Minerals

What do we need to know?

- Nutrient needs
 - maintenance
 - growth
 - lactation
 - pregnancy
- Nutrient supply
 - forage
 - grains
 - supplements
- Nutrient costs
 - home-grown feeds
 - purchased feeds

Water Needs

First limiting nutrient

- Drives feed intake
 - Water used in many reactions in the body
- Must be fresh and clean
- Feed and other environmental contaminants (dust, bedding, bird droppings, etc.) readily reach most water tanks
- Must ensure that water supply and access is ample during warm months

System	Need, gallons/day*			
Lactating dairy cow	35			
Lactating beef cow	10			
Feedlot cattle	14			
Growing cattle	10			
Ewe with lamb(s)	3			
Feedlot lamb	2			
Goat	1			
*Unadjusted for weather				

Water Supply Situations

Anti Quality Factors

- Ideal salinity or TDS <
 1,000 mg/L or 1,000 ppm
 - From 1,000 to 6,999 safe for adult ruminants
- Nitrate < 44 ppm
 - From 45 to 132 ppm safe if diet is N balanced
- Sulfate < 1,000 ppm
- Bacteria counts < 15 counts/100 mL
 - Coliforms < 10 counts/100 mL</p>
- Algae

Animals (and humans) eat units of weight not units of concentration

- Nutrients represented as concentration in feeds (% ppm)
 - Hay sample (ABC) contains
 1.12 Mcal NE_m/kg of DM or
 55% TDN
- Nutrient needs of animals represented as mass
 - Beef cow (blue # 150)requires 16 lb TDN daily
 - Cow # 150 must consume 29
 Ib of hay as DM to meet her energy needs

Dry Matter Intake—concentration times mass

- Cow # 150 projected Dry Matter Intake (DMI)
 - Her BW times 2%
 - 1500 lb X 0.02 = 30 lb
- At 2% of BW, TDN content (55%) of hay ABC should be sufficient
 - If cow # 150 eats 29 lb DM = requirements met
 - If cow # 150 eats 1 lb DM = requirements not met
 - Adequate nutrient
 concentration and adequate
 DMI = satisfied requirements

DMI Estimates

System	DMI, % of BW			
Lactating dairy cow	4.0			
Lactating beef cow	2.0			
Feedlot cattle	2.3			
Growing cattle	2.8			
Ewe with twins	4.0			
Feedlot lamb	4.0			
Goat, feeder	3.2			
*Unadjusted for weather				

- DMI is calculated based on complex formulas
 - Energy of feed
 - Production
 - BW
- Approximate values for guidelines provided here

Managing DMI is Essential

Managing DMI is Essential

Why Dry Matter? Where the nutrients are!

- Why dry matter?
 - Because most ruminant feeds contain a fair amount of moisture within them
 - High-moisture content:
 - Pastures
 - Co-products
 - Corn
 - Potato
 - Beet
 - Fermented feeds
 - Haylage
 - Silage
 - Low-moisture content:
 - Dry storage feeds
 - Hay
 - Grains

Energy Requirements for Maintenance

- Often represented as Mcal(NE_m)or lb of TDN/day
- Simplest method of calculating it is: 0.77 X BW ^{0.75}, BW = kg

System	BW, Ib	DMI, lb/day	NE _m , Mcal/lay
Lactating cow	1500	60	10.2
Beef cow	1500	30	10.2
Feedlot cattle	1000	23	7.6
Growing cattle	800	22	6.4
Ewe	150	6	1.6
Goat, feeder	80	2.6	1.0

Gain, lactation, fetal growth requirements added onto maintenance

	N
	þ

System	BW, Ib	DMI, lb/d	NE _m , Mcal/day	NE _g or NE _l , Mcal/day	Dietary concentration
Lactating cow	1500	60	10.2	33.0	NE ₁ = 77/cwt
Beef cow	1500	30	10.2	9.6	$NE_m = 66/cwt$
Beef cow	1500	30	10.2	9.6	TDN = 64%
Feedlot cattle	1000	23	7.6	10.7	$NE_g = 71/cwt$
Growing cattle	800	22	6.4	6.3	$NE_g = 48/cwt$
Ewe	150	6	1.6	2.5	TDN = 69%
Goat, feeder	80	8	1.0	0.5	TDN = 67%

Body Condition Scoring

- On animals fed at or near maintenance
 - Dry dairy cow
 - Beef cow
 - Gestating small ruminants
- Assigning a body condition score (BCS) helps us manage nutrition

BCS Defined

- 1. Bone structures visible and sharp No fat deposits or muscling.
- 2. No fat deposition, muscle loss
- 3. Very little fat cover over the loin, back and fore-ribs
- 4. Fore-ribs noticeable
- 5. Ribs still visible but beginning to round
- 6. Ribs are covered and not noticeable. Hindquarters plump and full.
- 7. Abundant fat cover on tailhead with. Fat in the brisket.
- 8. Fat cover thick and patch. Full brisket.
- 9. Tailhead is buried in fat. Mobility impaired.

Conclusions

- Rumen microbes aid in supplying nutrients to cattle, sheep and goats—feed to maximize microbial yield
- Water is the most important nutrient—yet we could improve supply, particularly in summer
 - Keep water quality in mind (clean and free of excessive solids)
- Nutrients in feed expressed as concentrations
- Nutrient needs expressed as amounts
 - Intake is the driver by which nutrients reach animals not concentration
 - Dry matter intake—because ruminant feeds contain variable amounts of water
 - · Feeding below required intake at the correct nutrient concentration does not work
 - · Neither does feeding above intake at low nutrient concentrations
- Energy need = maintenance + production requirements
 - Energy measurements = NE_m , NE_l , NE_g , TDN
- Assigning a body condition score is a way to manage nutrition in ruminants fed at maintenance
 - Measure of fat cover