Parasite Control & Being a Good Steward: Tips to Implementing New Research Findings (Crystal Ball Stuff)

michael.hildreth@sdstate.edu
605-691-9073
Departments of Veterinary & Biomedical Sciences
and Biology & Microbiology

GERMS (Protozoans)

WORMS

- Flukes (Trematodes)
- Tapes (Cestodes)
- Roundworms (Nematodes)

Crypto (Cryptosporidium)

Coccidia (Eimeria)

BUGS

- Flies (adult Dipterans)
- Grubs (larval Dipterans)
- Lice (Sucking and Biting)
- Mites

CATTLE PARASITES

Approaches to Treating Lice on Cattle

Entirely Dependent on Pesticides

Types of Applications:

- Sprays & Dusts (& Fogs?) (Insecticides)
 - Permethrin -
 - Malathion ?? -
- Pour-ons
 - Macrocyclic Latones systemic: sucking & biting lice
 - Avermectins Ivermectin, Doramectin, etc.
 - Milbemycins Moxidectin
 - Permethrin non-systemic
 - Insect Growth Regulators (IGR) combined with permethrin sucking & biting lice
- Injectables (endectocides)— better on sucking lice
 - Macrocyclic Lactones
 - Avermectins Ivermectin, Dormamectin, etc.
 - Milbemycins Moxidectin

- Studies on controlling pesticide resistance take years to get results
- Computer models are commonly used
- Models can't show any delay in resistance from rotating classes of pesticides
- Models show advantages with combination

Rotating insecticide & Anthelmintic Classes is "out"; Combinations are "in"

Combining Insecticide Classes

Haematobia irritans irritans (Horn Fly)

Guide to Estimating Fly Numbers

Level 1:

A single small patch of flies = 25-50 flies located in area A, B or C

Level 2:

A single patch of flies that covers areas
A and B or B and C = 100-125 flies

Level 3:

The patch of flies extends through all 3 areas = 200-350

Level 4:

The patch of flies covers all areas extensively

"Control" of Horn Flies Mostly Dependent on Insecticides

- Sprays
 - High Pressure
 - Low Pressure
- Insecticide Impregnated Ear Tags
 - Organophosphates
 - Pyrethroids
 - Organochlorines
 - Macrocyclic Lactones
- Bags and Rubs
- Mineral Blocks and Feed Additives (Larvacides)
- Traps

GERMS (Protozoans)

WORMS

- Flukes (Trematodes)
- Tapes (Cestodes)
- Roundworms (Nematodes)

•Crypto (Cryptosporidium)

Coccidia (Eimeria)

BUGS

- Flies (adult Dipterans)
- Grubs (larval Dipterans)
- Lice (Sucking and Biting)
- Mites

CATTLE PARASITES

CATTLE WORKS WEEDS

(Trichostrongyle Nematodes)

In only 1 fecal sample, it is possible to detect trichostrongyle nematodes in virtually all ruminants with access to grass anywhere in the world

You can't eliminate them, but you can manage them

Goats:

- Extremely Susceptible
- Control measures needed in all areas of **South Dakota**

Sheep:

- Very Susceptible
- Control measures needed in most areas of the Northern Plains

Cattle: **Bison:**

Moderately Susceptible

- Moderately Susceptible
- Control measures for economic gains only

Aggregation of nematodes in a herd population creates the opportunity to use

Trichostrongyle Genera in Beef Calves from Eastern South Dakota

HOTC Complex

Haemonchus placei (Cattle) orH. contortus (Sheep)

- o Parasitizes the abomasum (stomach)
- Most deadly trichostrongyle also production losses
- More common to wet and warm climates

Ostertagia ostertagi

- Can raise pH of the stomach and clinical problems
- Causes production losses
- Commonly found in South Dakota cattle

•Trichostrongylus spp.

- Parasitizes stomach or intestine
- Rare in South Dakota cattle; very common in sheep
- Causes production losses

Cooperia spp.

- Commonly found in South Dakota cattle
- Causes production losses, but not clinical problems

- Ostertagia & Cooperia 3rd stage juveniles can survive adverse environmental conditions in the soil
- They can easily survive S.D. winters
- Haemonchus cannot survive S.D. winters and struggle more during dry summers
- All trichostrongyle 4th stage juvenile can survive in the wall of the gut

CLINICAL PARASITISM

Haemonchus

Rare in South Dakota

- Sudden Death
- Weakness

Anemia

- Bottle jaw
- Diarrhea / Loose stools

Problems caused by Trichostrongyle Infections Vary depending on species and intensity

SUBCLINICAL PARASITISM

- Reduced Appetite
- · Reduced weaning wt.
- Reduced reproductive performance
- Reduced milk production
- Reduced growth rate
- Increased susceptibility to disease

HOUSING COSTS

Ostertagia and Cooperia

Haemonchus

- Historically, a tropical worm
- Becoming more common in **Northern Plains**

In Sheep - Haemonchus contortus

- Can cause lethal anemia
- Often resistant to anthelmintics

In Cattle - H. placei & H. contortus

- Doesn't seem to be as lethal, but
- Affects weight
- H. contortus often resistant

FAMACHA©

- Worms in stocker cattle cost South Dakota producers ~ 10-15 pounds per calf every 100 days on pasture
- Even with low egg output (≤ 35 EPG)
- Other effects of worms
 - Conception rates
 - Carcass quality
 - Immunity

Most years it's worth the costs to treat and prevent these losses IF cattle can be protected during the key time period!

Cattle Dewormer Persistence

1 day

Cattle Dewormer Persistence

❖Imidazothiazoles Class

Levamisole
 Older anthelmintic
 that was
 discontinued for a
 while

120 days

- ❖ Benzimidizole Class
 - Albendazole
 - Oxbendazole
 - Fenbendazole

- Macrocyclic Lactone Class
 - MilbemycinSubclass
 - Moxidectin

- Macrocyclic Lactone Class
 - > Avermectin Subclass
 - Ivermectin
 - Doramectin
 - Eprinomectin

Accepted Manuscript

Anthelminthic Resistance Study 2007-10

Title: Overwintering Strategies of a Population of Anthelmintic-resistant *Haemonchus contortus* within a Sheep Flock from the United States Northern Great Plains

Authors: D.D. Grosz, A.A. Eljaki, L.D. Holler, D.J. Petersen, S.W.Holler, M.B. Hildreth

Drug	Collection Dates	Mean Eggs/Gram	Percent Reduction (Confidence Interval) ^b			
[N]	Conection Dates	(Stand. Deviation)				
Doramectin	preT: 7/2/07	1419 (918)	69%			
[23 lambs]	postT: 7/30/07	444 (215)	(44-83%)			
Albendazole	preT: 10/13/09	1092 (906)	90%			
[29 lambs]	postT: 10/23/09	106 (172)	(81-95%)			
Moxidectin [27 ewes]	preT: 10/12/10	317 (322)	100%			

TRIPLE TREATMENT METHODS

❖ Animals

- Commercial 250 ewe flock in east-central South Dakota
- History of H. contortus problems
- Rotationally grazed ewes through 116 acre pasture divided into 8 paddocks.

Anthelmintics

- > Starting in April 2014, 3 different anthelmintics were given orally:
 - moxidectin (Cydectin®; dosage of 0.2mg/kg),
 - ❖ <u>albendzole</u> (Valbazen®; dosage of 7.5mg/kg),
 - !evamisole (Prohibit®; dosage of 7.5mg/kg).
- > Ewes were treated a 2nd time if FECs were greater than 1.
- > All ewes were treated again in spring of 2015 with levamisole

Fecal Egg Counts (FECs)

- Pre-treatment (N=250)
- Post-treatment (N=250; after at least 9 days)
- > Only ewes with FECs less than 1 EPG went onto the pastures.
- Pasture samples picked up every-other week (N=30)
- Following Years during spring and fall (N=30)

Grazing Rotation

- Prior to August 10, rotated through first 4 paddocks (17.62 ha) before retuning to a paddock; 3 total rotations through these.
- Other 3 paddocks were grazed only once, later in the season.

- Rotational grazing can provide relief depending on the rotational scheme
- Successfully being used in an flock of 400 ewes infected with anthelmintic-resistant Haemonchus
- Timing is a critical factor; the longer the period between returning to a plot, the better.

Table 1. Rotational grazing time-table for 2014

Pad. No.	Area Hectares	1st Rotation		Days	Weeks	2nd Rotation		Days	Weeks	3rd Rotation		Days	Weeks
		Begin	End	*	After**	Begin	End	*	After**	Begin	End	*	After**
1	4.56	6/30	7/7	7	1	8/10	8/18	8	7	10/15	10/23	8	16
2	1.36	7/7	7/10	3	2	8/18	8/21	3	8	10/10	10/15	5	15
3	3.63	7/10	7/17	7	3	8/21	8/26	5	8	10/23	10/28	5	17
4	8.07	7/17	8/1	15	4&5	9/2	9/11	9	10-11	10/28	11/4	5	18
5	5.8	8/1	8/10	9	6	9/29	10/10	8	14	3			
6	8.88	8/26	9/2	7	9					5			
7	5.06	9/11	9/19	8	11-12		*		32	***	*		3

7

Fecal Egg Counts from Ewes Treated with 3 Classes of Anthelmintics

- mean pre-treatment FEC was 3606.8 EPG), ranging from 0 to 49400 EPG.
- The first triple treatment showed a 99.99% FEC reduction to 0.16 EPG
- ❖ 68% of the post-treatment samples showed no eggs; 27.6% contained less than 1 EPG, and 4.4% contained between 1 and 2 EPG.
- ❖ FEC at turnout was 0.12 eggs per gram
- Ewes with more than 1 EPG were kept in a feedlot
- After 18 weeks rotating through the different paddocks, FEC was already 30.7 EPG
- Next Spring, egg counts were still pretty low
- Spring of 2016 and 2017, FEC was about one/third of the original because of culling and rotations

PARASITE MANAGEMENT

- Parasite Treatment (Fall Deworming)
 - **⇔**Targets 10% of the Parasite Population
 - **⇔**Doesn't require product with persistence
 - Avermectins also control lice, especially as pour-ons
- Parasite Management/Prevention (Strategic or Spring Deworming)
 - **⇔** Targets 90% of Parasite Population
 - Requires persistence or multiple treatments

